研究生: |
林懌 Lin, I |
---|---|
論文名稱: |
二維渦度方程及其應用 The Two-dimensional Vorticity Equation and its Application |
指導教授: |
江金城
Jiang, Jin-Cheng |
口試委員: |
蔡東和
方永富 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 渦度 、流體 |
外文關鍵詞: | Navier-Stokes |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是針對 Giga 及 Kambe 在渦度方程上研究結果的整理。在本論文中,我們將從描述帶有黏性且不可壓縮的流體運動的 Navier-Stokes 方程出發導出渦度方程。建基於渦度方程解的存在與唯一性,我們證明其解的漸進定理,即當時間足夠大時解的漸進行為。然後討論此漸進定理的一個應用。
This thesis is a survey of research result of Giga and Kambe on the vorticity equation. In this thesis, we start with the Navier-Stokes equations, which describe the incompressible viscous flows in fluid mechanics, then the vorticity equation is derived from them. Based on the existence and uniqueness for the solution of the vorticity equation, we have the asymptotic formula for the solution which means the solution will approach the fundamental solution of the heat equation as time is large enough. Then we discuss an application of this asymptotic formula.
References
[1] M. Ben-Artzi (1994), “Global solutions of two-dimensional Navier-Stokes and
Euler equations”. Arch. Rational Mech. Anal., 128, 329-358
[2] Mi-Ho Giga, Yoshikazu Giga, and Jürgen Saal (2010), “Nonlinear Partial
Differential Equations: Asymptotic Behavior of Solutions and Self-Similar
Solutions”. Springer
[3] Y. Giga, T. Miyakawa, and H. Osada (1988), “Two dimensional Navier-Stokes
flow with measures as initial vorticity”. Arch. Rational Mech. Anal., 104, 223-
250
[4] T. Kambe (1984), “Axisymmetric vortex solution of Navier-Stokes equation”.
J. Phys. Soc. Jpn., 53, 13-15
[5] T. Kato (1994), “The Navier-Stokes equation for an incompressible fluid in
R2 with a measure as the initial vorticity”. Diff. Integral Equations, 7, 949-966
[6] Y. Maekawa (2008), “A lower bound for fundamental solutions of the heat
convection equations”. Arch. Rational Mech. Anal., 189, 45-58
[7] H. Osada (1987), “Diffusion processes with generators of generalized divergence
form”. J. Math. Kyoto Univ., 27, 597-619