簡易檢索 / 詳目顯示

研究生: 余孟冠
Yu, Meng-Kuan
論文名稱: 關於核密度函數估計之研究
A Study on Kernel Density Estimation
指導教授: 胡殿中
Hu, Tien-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 31
中文關鍵詞: 核密度函數估計窗距平均積分方差漸近平均積分方差
外文關鍵詞: kernel density function estimation, bandwidth, mean integrated square error, asymptotic mean integrated squared error
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 窗距的選取在核密度函數估計量扮演重要的角色,本文以平均積
    分方差 (mean integrated square error, MISE) 與漸近平均積分方差(asymptotic mean integrated squared error, AMISE) 作為評估準則,探討六個機率分配,在不同樣本個數下的最佳窗距。直觀上,在資料密集的區域,給予較小的窗距,而資料稀疏的區域,給予較大的窗距,則核估計量將會較接近真實機率密度函數,故本文提出可變窗距之核密度函數估計量。可變窗距為局部窗距因子 (local bandwidth factor)與全域平滑參數 (global smoothing parameter) 的乘積,本文利用集群分析 (cluster analysis) 求得局部窗距因子,並藉由最小平方交叉驗證法 (least squared cross validation, LSCV) 得到全域平滑參數。最後利用電腦程式模擬對本文所提出的可變窗距之核密度函數估計量與Parzen (1962)、Abramson (1982) 的核估計量進行探討比較。


    1. 緒論 1 1.1 前言…………………………………………………………………………1 1.2 核密度函數估計……………………………………………………………2 1.3 研究動機與目的……………………………………………………………5 1.4 研究架構……………………………………………………………………6 2. 核密度函數估計量的評估 7 2.1 平均積分方差與漸近平均積分方差的最佳窗距…………………………8 2.2 最佳窗距的比較…………………………………………………………..17 3. 可變窗距的選取 19 3.1 概述………………………………………………………………………..19 3.2 局部窗距因子的選取……………………………………………………..19 3.3 全域平滑參數的選取……………………………………………………..21 3.4 模擬研究…………………………………………………………………..24 4. 結論 30 參考文獻 31

    [1] 廖登義 (1997). 可變窗距核密度函數估計之研究. 清大數學所碩士論文.
    [2] Abramson, I. S. (1982). On bandwidth variation in kernel estimates—a quare
    root law. The Annals of Statistics, 10, 1217-1233.
    [3] Hall, P., Hu, T. C., and Marron, J. S. (1995). Improved variable window kernel
    estimates of probability densities. The Annals of Statistics, 23, 1-10.
    [4] Hu, T. C. (1993). A modified variable kernel density estimation. Journal of the
    Chinese Statistical Association, 31, 63-71.
    [5] Hu, T. C., Yheu, J. Y., and Horng, W. J. (1994). Transformation kernel density
    estimation. Journal of the Chinese Statistical Association, 32, 121-142.
    [6] Marron, J. S., and Wand, M. P. (1992). Exact mean integrated squared error.
    The Annals of Statistics, 20, 712-736.
    [7] Parzen, E. (1962). On estimation of a probability density function and mode.
    The Annals of Mathematical Statistics, 33, 1065-1076.
    [8] Rudemo, M. (1982). Empirical choice of histograms and kernel density
    estimateors. Scandinavian Journal of Statistics, 9, 65-78.
    [9] Samiuddin, M., and El-Sayyad, G. M. (1990). On nonparametric kernel density
    estimate. Biometrika, 77, 865-874.
    [10] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis.
    Chapman and Hall, London.
    [11] Wand, M. P., and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall,
    London.
    [12] Wu, T. J. , Chen, C. F., and Chen, H. Y. (2007). A variable bandwidth selector
    in multivariate kernel density estimation. Statistics & Probability Letters, 77,
    462-467.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE