研究生: |
黃俊溢 Huang, Chun-I |
---|---|
論文名稱: |
萊斯衰減通道下都普勒擴展與直視成分之估測研究 Doppler Spread and Line-of-sight Component Estimation in Rician Fading Channels |
指導教授: |
蔡育仁
Tsai, Yuh-Ren |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 30 |
中文關鍵詞: | 萊斯衰減 、都普勒擴展 、估測 |
外文關鍵詞: | Rician, Doppler, Estimation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們主要是要探討在中低速情況且有直視成分存在下,都普勒擴展的估測。都普勒擴展是個與車速有關係的因子,因此都普勒估測對行動通訊系統是非常重要的,準確的估測會對行動通訊系統的通道估測、同步等,有相當大的幫助;然而在中低速的情況下,都普勒擴展估測的成效,會因為通道取樣之間的相關性變高而受到很大的影響。另外直視成分的存在,則會使得都普勒擴展的估測變得麻煩許多,因為直視成分包含了如入射角、初始相位偏移等其他未知的因子,這些因子也會影響到我們都普勒擴展估測的成效。
近來已有利用通道取樣的協方差來解決這類問題,主要是利用長時間通道取樣的協方差的特性,來進行在有直視成份下的都普勒擴展估測。然而在中低速的情況下,由於通道變化緩慢,使得這類作法在這種情況下,必須收集非常大量的取樣資料來進行估測,顯得有些不切實際;且當直視成份變大時,成效也會變差。在論文中,我們主要是提出以最大似然法則為基礎的估測法最大似然估測是一個大家熟知在中低速情況有不錯成效的估測法,且由於有直視成份的存在我們也會提出一套對直視成分的估測法則。在後面的模擬結果可看出,此估測法有不錯的成效,且與利用通道取樣協方差的方法相比,我們的估測法更能有效對付中低速情況和直視成分之影響。
[1] G. L. St□ber, Principles of Mobile Communication, 2nd ed. Norwell, MA: Kluwer, 2001.
[2] A. Wiesel, J. Goldberg, and H. Messer-Yaron, “SNR estimation in time-varying fading channels,” IEEE Trans. Commun., vol. 54, no. 5, pp. 841–848, May 2006.
[3] L. Krasny, H. Arslan, D. Koilpillai, and S. Chennakeshu, “Doppler spread estimation in mobile radio systems,” IEEE Commun. Lett., vol. 5, no. 5, pp. 197–199, May 2001.
[4] G. L. Stぴuber, Principles of Mobile Communication, 2nd ed. Boston, MA: Kluwer, 2001.
[5] G. Park, S. Nam, T.Yu,D. Hong, and C. Kang, “A modified covariance based mobile velocity estimation method for Rician fading channels,” IEEE Commun. Lett., vol. 9, no. 8, pp. 706–708, Aug. 2005.
[6] C. Tepedelenlioglu and G. B. Giannakis, ”On the velocity estimation and correlation properties of narrow-band mobile communication channels,” IEEE Trans. Veh. Technol., vol. 50, pp. 1039-1052, July, 2001.
[7] K.-J. Yang and Y.-R. Tsai, “Approximate ML Doppler spread estimation over flat Rayleigh fading channels,” IEEE Signal Process. Lett., vol. 16, no. 11, pp. 1007–1011, Nov. 2009.
[8] Kareem E. Baddour and Tricia J. Willink, “Improved Estimation of the Ricean K-factor from I/Q Fading Channel Samples,” IEEE Transactions on Wireless Communications, vol 7, no. 12, Dec. 2008
[9] Yunfei Chen and Norman C. Beaulieu, “Maximum Likelihood Estimation of the K Factor in Ricean Fading Channels,” IEEE Communications Letters, vol, 9, no. 12, pp 1040-1042, Dec. 2005
[10] Yahong Rosa Zheng and Chengshan Xiao, “Mobile Speed Estimation for Broadband Wireless Communications over Rician Fading Channels,” IEEE Transactions on Wireless Communications, vol 8, no. 1, Jan. 2009
[11] L.J. Greenstein, D. G. Michelson, and V. Erceg,” Moment-method estimation of the Ricean K-factor,” IEEE Commun. Lett, Vol. 3, No. 6, pp 175-176, June 1999
[12] Hong Zhang and Ali Abdi, “Cyclostationarity-Based Doppler Spread Estimation in Mobile Fading Channels,” IEEE Transactions on Communications, Vol. 57, No. 4, pp 1061-1067, April 2009
[13] S.Mohanty, “VEPSD: A novel velocity estimation algorithm for next-generation wireless systems,” IEEE Trans. Wireless Commun, vol. 4, no. 6, pp. 2655-2660, Nov. 2005
[14] A. Dognadzic and B. Zhang, “Estimating Jake’s Doppler power spectrum parameters using the whittle approximation,” IEEE Trans. Signal Process., vol. 53, no. 3, pp. 987-1005, Mar 2005.