研究生: |
陳峰霖 Feng-Lin Chen |
---|---|
論文名稱: |
利用硫酸/草酸混合溶液製作規則陽極氧化鋁孔洞 Fabrication of Anodic Aluminum Oxide (AAO) Array Using Sulfuric/Oxalic Acid Mixture as Electrolyte |
指導教授: |
蔡哲正
Cho-Jen Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 陽極氧化鋁 、奈米點 、奈米線 |
外文關鍵詞: | anodic aluminum oxide (AAO), nanodot, nanowire |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自組裝形成的多孔性陽極氧化鋁不但製程成本低、生產率高、面積大,且製程步驟簡單,可應用於製作規則的奈米結構。為了製作不同孔洞間距的陽極氧化鋁,在此實驗中,有別於一般所使用單種酸的電解液,電解拋光後的鋁箔在不同比例的草酸/硫酸的混合溶液中,以不同的外加電壓,經由二次電解步驟來製作不同孔洞間距的規則陽極氧化鋁。陽極氧化鋁孔洞的規則性是利用掃描式電子顯微鏡(SEM)觀察得知。在此面論文中,不同孔洞間距(82, 78, 66, 63,和58nm)的陽極氧化鋁以利用不同比例草酸/硫酸混合溶液在不同外加電壓(33, 29, 26, 24,和21V)下經陽極氧化方式製作出來。在此實驗中,也利用他種酸(硝酸、醋酸)來當作電解液。
此外,利用Al/Ti/Si基板及Al/Si基板的結構,經局部電化學陽極氧化的方式,點間距為96nm的氧化鈦奈米點及間距為65nm 氧化矽奈米點也成功地在此實驗中製作出來。而我也以超薄(約100nm)多孔氧化鋁當作模板,經濺鍍及蒸鍍的方式,分別製作出點間距為100nm的規則鉑及鎳奈米點。經由800°C的退火處理,鉑的奈米點會由圓盤形縮成圓球形。最後,在本實驗中,以高深寬比的多孔性陽極氧化鋁作模板,經電化學沈積的方式合成大範圍規則且俱形狀異向磁性質的鎳奈米線。此規則奈米線裸露出來的長度可利用在氫氧化鈉溶液選擇性蝕刻的時間長短來控制。由此實驗結果可知,其他不同孔洞間距的規則陽極氧化鋁可利用此方法備製且以陽極氧化鋁做模板可以廣範地應用於製作各種低維度的規則奈米材料。
The self-organized anodic aluminum oxide mask provides low cost, high throughput, large scale and fundamentally simple processes to creat periodic nanostructures. Camparing with using the tranditional electrolytes, electropolished Al foils were anodized by two-step anodization in sulfuric/oxalic acid mixture with different proportion as electrolyte at different applied voltages to induce the ordered structure in a wilder range of interpore distance. The morphologies of these samples were examined by scanning electron microscope (SEM). In the thesis, different interpore distances (82, 78, 66, 63, and 58 nm) of ordered porous alumina were carried out by anodization in different proportional sulfuric/oxalic acid mixture solution as electrolyte at specific voltages (33, 29, 26, 24, and 21V). Other acids as electrolyte were also used in the experiment.
On the other hand, the titanium oxide nanodots with 96nm interval and silicon oxide nanodots with 65nm interval were prepared successively from Al/Ti films on silicon substrate and Al film on silicon substrate by locally electrochemical anodization. Ordered Pt and Ni nanodots arrays with spacing distance of 100nm were fabricated using ultra-thin (~100nm) porous alumina as a mask by sputter deposition and evaporation deposition, respectively. After annealing Pt particles under 800°C, the shape of Pt nanostructure changes from disc to spherical-dot shape. Moreover, large ranged of highly ordered Ni nanowires with shape anisotropic magnetic properties were synthesized by electrodeposition by using high-aspect-ratio porous alumina as template. The length of appearance nanowire tips can be easily adjusted by wet etching in NaOH solution for suitable time. This approach offers considerable versatility in the choice of materials.
1-1 H. Masuda, F. Hasegwa, and S. Ono, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, J. Electrochem. Soc. Vol. 144, L127, (1997).
1-2 O. Jessensky, F. Müller, and U. Gösele, ‘Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina”, J. Electrochem. Soc., Vol. 145, 3735, (1998).
1-3 H. Masuda, K. Yada, and A. Osaka, “Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution”, Jpn. J. Appl. Phys., Part 2, Vol. 37, L1340, (1998).
1-4 A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal Pore Arrays with a 50–420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina”, J. Appl. Phys., Vol. 84, 6023, (1998).
1-5 O. Jessensky, F. Müller, and U. Gösele, “Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, Appl. Phys. Lett., Vol. 72, 1173, (1998).
1-6 Z. L. Wang, Y. Liu, and Z. Zhang, “Handbook of Nanophase and Nanostructured Materials Vol.3 Materials Systems and Applications (I)”, (2003).
1-7 Bandyopadhyay, S., L. Menon, N. Kouklin, H. Zeng, and D. J. Sellmyer., “Electrochemically Self-Assembled Quantum Dot Arrays”, J. Elec. Mat. , Vol. 28, 515, (1999).
1-8 B. Cui, W. Wu, L. Kong, X. Sun, and S. Y. Chou, “Perpendicular Quantized Magnetic Disks with 45 Gbits on a 4 × 4 cm2 Area”, J. Appl. Phys., Vol. 85, 5534,
(1999).
1-9 J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, “Fabrication of Nanostructures with Long-Range Order Using Block Copolymer Lithography”, Appl. Phys. Lett., Vol. 81, 3657, (2002).
1-10 F. J. Castaño, S. Haratani, Y. Hao, C. A. Ross, and H. I. Smith, “Giant Magnetoresistance in 60–150-nm-Wide Pseudo-Spin-Valve Nanowires”, Appl. Phys. Lett. Vol. 81, 2809, (2002).
1-11 G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter,
and B. D. Terris, “Nanoscale Patterning of Magnetic Islands by Imprint Lithography Using a Flexible Mold”, Appl. Phys. Lett. Vol. 81, 1483, (2002).
1-12 T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles”, J. Phys. Chem. B, Vol. 104, 10549, (2000).
1-13 H. Masuda and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask”, Jpn. J. Appl. Phys., Vol. 35, L126, (1996).
1-14 Y. Lei, K. S. Yeong, J. T. L. Thong, and W. K. Chim, “Large-Scale Ordered Carbon Nanotube Arrays Initiated from Highly Ordered Catalyst Arrays on Silicon Substrates”, Chem. Mater., Vol. 16, 2757, (2004).
1-15 F. Keller, M. S. Hunter, and D. L. Robinson, “Structural Features of Oxide Coatings on Aluminum”, J. Electrochem. Soc., Vol. 100, 411, (1953).
1-16 Masuda H., K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, Vol. 268, 1466, (1995).
1-17 S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling Factor of Self-Ordering of Anodic Porous Alumina”, J. Electrochem. Soc., Vol. 151, B473, (2004).
2-1 F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide”, Chem. Mater., Vol. 10, 2470, (1998).
2-2 O. Jessensky, F. Müller, and U. Gösele, “Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, Appl. Phys. Lett., Vol. 72, 1173, (1998).
2-3 K. Shimizu, K. Kobayashi, P. Skeldon, G. E. Thompson, G. C. Wood, “An Atomic Force Microscopy Study of the Corrosion and Filming Behaviour of Aluminium”, Corrosion Sci., Vol. 39, 701, (1997).
2-4 T. Valand, K. E. Heusler, “Reactions at the Oxide/Electrolyte Interface of Anodic Oxide Films on Aluminum”, J. Electroanal. Chem., Vol. 149, 71, (1983).
2-5 G. E. Thompson; G. C. Wood, “Anodic Films on Aluminium. In Treatise on Materials Science and Technology, Vol. 23: Corrosion: Aqueous Process and Passive Films”, (1983).
2-6 K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gösele, “Self-Ordering Regimes of Porous Alumina: The 10 Porosity Rule”, Nano Letters, Vol. 2, 677, (2002).
2-7 S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, “Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum” , Jpn. J. Appl. Phys. Vol.36, 7791, (1997).
2-8 L. Ba, and W. S. Li, “Influence of Anodizing Conditions on The Ordered Pore Formation in Anodic Alumina”, J. Phys. D: Appl. Phys., Vol. 33, 2527, (2000).
2-9 A. Cai, H. Zhang, H. Hua and Z. Zhang, “Direct Formation of Self-Assembled Nanoporous Aluminium Oxide on SiO2 and Si Substrates”, Nanotechnology, Vol. 13, 627, (2002).
2-10 D. A. Brevnov, G. V. R. Rao, G. P. Lopez, P. B. Atanassov, “Dynamics and Temperature Dependence of Etching Processes of Porous and Barrier Aluminum Oxide Layers”, Electrochimica Acta. Vol. 49, 2487, (2004).
2-11 M. Tian, S. Xu, J. Wang, N. Kumar, E. Wertz, Q. Li, P. M. Campbell, M. H. W. Chan, and T. E. Mallouk, “Penetrating the Oxide Barrier in Situ and Separating Freestanding Porous Anodic Alumina Films in One Step”, Nano Lett., Vol. 5, 697, (2005).
2-12 T. Xu, G. Zangari, R. M .Metzger, “Periodic Holes with 10 nm Diameter
Produced by Grazing Ar+ Milling of the Barrier Layer in Hexagonally Ordered
Nanoporous Alumina”, Nano Lett, Vol. 2, 37, (2002).
2-13 T. Y. Cheng, J. T. Sheu, and I. K. Fong “Study of nano-scaled alumina template mask by using self-assembly anodic oxidation method”, 暨南國際大學電機工程學系碩士論文, (2003).
2-14 C. Y. Liu, A. Datta, N. W. Liu, C. Y. Peng, and Y. L. Wang, “Order-Disorder Transition of Anodic Alumina Nanochannel Arrays Grown Under the Guidance of Focused-Ion-Beam Patterning”, Appl. Phys. Lett. Vol. 84, 2509, (2004)
2-15 Shingubara S., Y. Murakami, K. Morimoto, H. Sakaue, and T. Takahagi, “Formation of Al Nanodot Array by the Combination of Nano-Indentation and Anodic Oxidation”, Mat. Res. Soc. Symp. Proc., Vol. 705, 133, (2002).
2-16 Masuda H., H. Yamada, M. Saitoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly Ordered Nanochannel-Array Architecture in Anodic Alumina”, Appl. Phys. Lett., Vol. 71, 2770, (1997).
2-17 H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina”, Adv. Mater., Vol. 13, 189, (2001).
2-18 K. Nishio, M. Nakao, A. Yokoo, and H. Masuda, “Ideally Ordered Metal Hole Arrays with High Aspect Ratios Prepared from Anodic Porous Alumina”, Jpn. J. Appl. Phys., Vol. 42, L83, (2003).
2-19 C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nanochannels on Focused-Ion-Beam-Prepatterned Aluminum Surfaces”, Appl. Phys. Lett., Vol. 78, 120, (2001).
2-20 A. Cai, H.e Zhang, H. Hua and Z. Zhang, “Direct formation of Self-Assembled Nanoporous Aluminium Oxide on SiO2 and Si Substrates”, Nanotechnology, Vol. 13, 627, (2002).
2-21 D. Crousea and Y. H. Lo, A. E. Miller and M. Crouse, “Self-Ordered Pore Structure of Anodized Aluminum on Ailicon and Pattern Transfer”, Appl. Phys. Lett., Vol. 76, 49, (2000).
2-22 S. Z. Chu, K. Wada, S. Inoue, and S. Todoroki, “Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate”, J. Electrochem. Soc., Vol. 149, B321, (2002).
2-23 P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and . L. Myrickz, “Growth and Characterization of a Porous Aluminum Oxide Film Formed on an Electrically Insulating Support” Electrochemical and Solid-State Letters, Vol. 6, B42, (2003).
2-24 M.T. Wu, I.C. Leu, and M.H. Hon, “Anodization Behavior of Al Film on Si Substrate with Different Interlayers for Preparing Si-Based Nanoporous
Alumina Template”, J. Mater. Res., Vol. 19, 888, (2004).
2-25 Masuda H., M. Ohya, H. Asoh, M. Nakao, M. Nohtomi and T. Tamamura, “Photonic Crystal Using Anodic Porous Alumina”, Jpn. J. Appl. Phys. Part2, Lett. 38, L1403, (1999).
2-26 Z Chen, Y Lei, HG Chew, LW Teo, WK Choi, WK Chim, “Synthesis of Germanium Nanodots on Silicon Using an Anodic Alumina Membrane Mask”, Journal of Crystal Growth, Vol. 268, 560, (2004).
2-27 M. T. Wu, I. C. Leu,z J. H. Yen, and M. H. Hon, “Preparation of Ni Nanodot and Nanowire Arrays Using Porous Alumina on Silicon as a Template Without a Conductive Interlayer”, Electrochemical and Solid-State Letters, Vol. 7, C61, (2004).
2-28 P. L. Chen and C. T. Kuo, T. G. Tsai, B. W. Wu, C. C. Hsu, and F. M. Pan, “Self-Organized Titanium Oxide Nanodot Arrays by Electrochemical Anodization”, Appl. Phys. Lett., Vol. 82, 28, (2003).
2-29 N. I. Tatarenko and A. Mozalev, “Geometry and Element Composition of a Nanoscale Field Emission Array Formed by Self-Organization in Porous Anodic Aluminum oxide”, Solid State Electron., Vol. 45, 1009, (2001).
2-30 A. Mozalev, S. Magaino, and H. Imai, “The Formation of Nanoporous Membranes from Anodically Oxidized Aluminium and Their Application to Li Rechargeable Batteries”, Electrochim. Acta, Vol. 46, 2825, (2001).
2-31 A. Mozalev, M. Sakairi, I. Saeki, and H. Takahashi, “Nucleation and Growth of the Nanostructured Anodic Oxides on Tantalum and Niobium under the Porous Alumina Film”, Electrochim. Acta,Vol. 48, 3155, (2003).
2-32 G. Meng, A. Cao, J. Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima, and P. M. Ajayan, “Ordered Ni Nanowire Tip Arrays Sticking out of the Anodic Aluminum Oxide Template”, J. Appl. Phys., Vol. 97, 064303, (2005).
2-33 Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M.Moskovits, and G. D. Stucky, “Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays”, Nano Lett., Vol. 4, 2337, (2004).
2-34 Cheng B. and E.T. Samulski, “Fabrication and Characterization of Nanotubular Semiconductor Oxides In2O3 and Ga2O3”, J. Mater. Chem., Vol. 11, 2901, (2001).
2-35 Y. Lei, K. S. Yeong, J. T. L. Thong, and W. K. Chim, “Large-Scale Ordered Carbon Nanotube Arrays Initiated from Highly Ordered Catalyst Arrays on Silicon Substrates”, Chem. Mater., Vol. 16, 2757, (2004).
2-36 Li J., C. Papadopoulos & J.M. Xu, “Highly-Ordered Carbon Nanotube Arrays for Electronics Applications”. Appl. Phys. Lett., Vol. 75, 367, (1999).
2-37 K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay, and M. B. Johnson, “Fabrication of Nanoring Arrays by Sputter Redeposition Using Porous Alumina Templates”, Nano Lett., Vol. 4., 200, (2004).
2-38 S. Shingubara, O. Okino, Y. Murakami, H. Sakaue, and T. Takahagi, “Fabrication of Nanohole Array on Si Using Self-Organized Porous Alumina Mask”, Vac. Sci. Technol. B, Vol. 19, 1901, (2001).
2-39 A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita and N. Teramae, “Self-Assembly of a Silica–Surfactant Nanocomposite in a Porous Alumina Membrane”, Nature Materials, Vol 3, 337, (2004).
3-1 Y. Lei, K. S. Yeong, J. T. L. Thong, and W. K. Chim, “Large-Scale Ordered Carbon Nanotube Arrays Initiated from Highly Ordered Catalyst Arrays on Silicon Substrates”, Chem. Mater., Vol. 16, 2757, (2004).
4-1 O. Jessensky, F. Müller, and U. Gösele, “Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, Appl. Phys. Lett., Vol. 72, 1173, (1998).
4-2 K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gösele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule”, Nano Lett., Vol. 2, pp.677-680, (2002).
4-3 G. D. Sulka, S. Stroobants, V. V. Moshchalkov, G. Borghs, and J. P. Ceils, “Effect of Tensile Stress on Growth of Self-Organized Nanostructures on Anodized Aluminum”, J. Electrochem. Soc., Vol. 151, B260, (2004).
4-4 P. L. Chen and C. T. Kuo, T. G. Tsai, B. W. Wu, C. C. Hsu, and F. M. Pan, “Self-Organized Titanium Oxide Nanodot Arrays by Electrochemical Anodization”, Appl. Phys. Lett., Vol. 82, 28, (2003).
4-5 S. Z. Chu, S. Inoue, K. Wada, S. Hishita, and K. Kurashima, “A New Electrochemical Lithography”, J. Electrochem. Soc., Vol. 152, B116, (2005).
4-6 G. Meng, A. Cao, J. Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima, and P. M. Ajayan, “Ordered Ni Nanowire Tip Arrays Sticking out of the Anodic Aluminum Oxide Template”, J. Appl. Phys., Vol. 97, 064303, (2005).
4-7 S. Z. Chu, S. Inoue, K. Wada, Y. Kanke, and K. Kurashima, “Fabrication and Characterization of Integrated Ultrahigh-Density Fe-Pt Alloy Nanowire Arrays on Glass”, J. Electrochem. Soc., Vol. 152, C42, (2005).
4-8 J. Oh, Y. Tak, and J. Lee, “Electrochemically Deposited NanoColumnar Junctions of Cu2O and ZnO on Ni Nanowires”, Electrochem. Solid-State Lett. Vol. 8, C81, (2005).