簡易檢索 / 詳目顯示

研究生: 王順錦
Wang, Shun-Jin
論文名稱: 應用於雷射干涉重力波偵測器之以離子束濺鍍法製作之奈米膜層結構高反射鏡及其結晶條件之探討
Fabrication and annealing study of the ion beam sputtered nano-layer structures in the high reflective dielectric mirror for the laser interference gravitational wave
指導教授: 趙煦
Chao, Shiuh
口試委員: 李正中
徐進成
任貽均
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 重力波偵測器機械損耗
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據愛因斯坦的廣義相對論中所敘述,具有加速度的物質會產生重力波(又稱引力波)。LIGO(Laser Interferometer Gravitational-wave Observatory)以超大型邁克森干涉儀,欲量測重力波,然而重力波強度極其微弱,必須降低外在雜訊的干擾,方可顯現欲觀察之訊號,因此,雜訊的降低為此量測系統中最需克服之困難。經由模擬得知,此干涉儀中最需改善之雜訊為Coating Brownian noise,是由高反射鏡上薄膜所產生。欲降低此雜訊,可將薄膜進行退火,並且於較高的退火溫度下,可達到較佳的效果,然而薄膜以高溫退火,可能造成內部產生結晶,其晶粒間摩擦將導致損耗上升。因此提升退火溫度,並維持薄膜其非晶結構為此主要目的。
    本實驗中,利用離子束濺鍍法,鍍製多層薄膜。多層膜由TiO2與SiO2兩薄膜所堆疊,其中,各層之TiO2膜厚相同,SiO2亦然,並以不同層數之多層膜,區分相異之單層膜厚,如層數為三層之多層膜,其單層TiO2膜厚為42.56奈米,至於十九層結構,其TiO2厚度則為8.51奈米。將上述之多層膜以不同溫度退火,並使用XRD與TEM進行相鑑定,找尋單層膜厚與結晶溫度之關係,其結果發現,於單層厚度越薄的情況下,薄膜結晶溫度越高。TiO2薄膜結晶溫度大約為200℃,若將薄膜厚度降為8.5奈米,結晶溫度將可提升至300℃附近。利用此結果,可應用於高反射鏡中,將內部堆疊之膜厚降低,以提升結晶溫度,並以此設定為退火溫度進行退火,預期可大幅降低雜訊強度。


    摘要 誌謝 目錄 圖目錄 表目錄 第 一 章 導論 1.1 前言 1.2 研究動機 第 二 章 薄膜鍍製 2.1 薄膜結構介紹 2.2 鍍膜系統介紹 2.2-1 真空腔構造簡介 2.2-2 真空泵浦簡介 2.2-3 薄膜製程中氣體流量控制 2.2-4 薄膜製程中電壓參數控制 2.3 使用橢圓儀進行膜層厚度量測與校準 2.3-1 橢圓儀簡介 2.3-2 薄膜厚度測試與校正 2.3-3 膜厚均勻度分佈 2.4 基板介紹 2.4-1cantilever製作方法 2.5 試片清洗步驟 2.5-1 一般試片清洗步驟 2.5-2 cantilever清洗步驟 2.6 cantilever鍍製流程 第 三 章 膜層厚度量測 3.1 TEM量測儀器與試片製作 3.1-1 TEM試片製作 3.1-2 TEM量測儀器 3.2 各結構膜厚量測 3.2-1 膜層厚度取法 3.2-2 膜厚量測 3.3 TEM與橢圓儀膜厚差異比較 第 四 章 機械損耗量測 4.1 理論與計算方式 4.2 量測系統介紹 4.3 各結構機械損耗量測 第 五 章 薄膜退火之測試 5.1 使用儀器與退火環境 5.2 薄膜退火後之量測分析 5.2-1 XRD量測分析 5.2-2 AFM表面量測分析 5.2-3 TEM量測分析 第 六 章 結論與未來展望 6.1 結論 6.2 未來展望 附錄A 橢圓儀分析方法與fitting經驗 附錄B Cantilever鍍製高反射鏡(澳大利亞試片) 附錄C 機械損耗量測之電路板製作 參考文獻

    [1] LIGO Scientific Collaboration Group Instrument Science White Paper, LIGO document: LIGO-T1100309-V5 (2011) pp.7-9
    [2]G. M. Harry et al., Optical coatings and Thermal noise in Precision Measurements Cambridge University Press (2012) pp. 24-64 ,.
    [3]R. Flaminio et al., A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors , CQG 27 (2010) 084030
    [4]J.S. Wu et al., How Stress can Reduce Dissipation in Glasses, Phys. Rev. B84 (2011) 174190
    [5]R. P. Netterfield et al., Investigation of ion beam sputtered Silica Titania mixtures for use in GW interferometer optics, OIC (2007) Thd2
    [6]I.M. Pinto et al., Effective medium theory for modeling dielectric mixture properties, LIGO document: G1100372 (2011)
    [7]N.S. Gluck et al., Microstructure and composition of composite SiO2/TiO2 thin films, J. Appl. Phys. 69 (1991) 3037
    [8]S.Penn et al., Recent measurements of coating and substrate mechanical loss for aLIGO, LIGO document: LIGO-G1000932-v1 (2010)
    [9]I.M. Pinto et al., Nanometer – layered SiO2 :: TiO2 mixtures for high reflectance/low noise coatings status update, LIGO document: LIGO-G1300321-v1(2013)
    [10]A. J. HAIJA et al., Effective characteristic matrix of ultrathin multilayer structure, Opt. Appl. XXXVI (2006) 1
    [11]王文祥, 具低損耗之光學混合膜及雷射反射鏡的研究,國立清華大學博士論文 (1999)
    [12]黃文正, 以離子束濺鍍法製作低損耗薄膜應用於雷射干涉重力波偵測儀之高反射鏡製程準備, 國立清華大學碩士論文 (2012)
    [13]李正中, 薄膜光學與鍍膜技術, 第六版 藝軒圖書出版社 (2009)
    [14]CompleteEASETM data analysis manual, J. A. Woollam Co., Inc (2009)
    [15]Standard operating procedure: J. A.Woollam M-200U white light ellipsometer, J. A. Woollam Co., Inc (2007)
    [16]C. M. Herzinger et al., Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation, J. Appl. Phys. 83 (1998) 3323-3336
    [17]L. Cauchy et al., Spectroscopic ellipsometry and reflectometry, John Wiley & Sons, Inc (1999) p.93
    [18]A.S. Ferlauto et al., Analytical model for the optical functions of amorphous semiconductors from the neal-infrared to ultraviolet: Applications in thin film photovoltaics, J. Appl. Phys. 92 (2002) 2424
    [19]M. Horprathum et al., Dymanic in situ spectroscopic ellipsometric study in inhomogeneous TiO2 thin-film growth, J. Appl. Phys. 108 (2010) 013522
    [20]歐政勳, 室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂及單晶矽懸臂之初步量測分析,國立清華大學碩士論文 (2012)
    [21]S. Bals et al., High-quality sample preparation by low kv FIB thinning fot analytical TEM measurements, Microsc. Microanal. 13 (2007) 80-86
    [22]S. T. Thornton et al., Classical dynamics of particles and systems, fifth edition Brooks Cole (2003) pp.109-121
    [23]N. Nakagawa et al.,Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss in a half-infinite mirror, Phys. Rev. D 65 (2002) 102001
    [24]I. W. Martin, Studies of materials for use in future interferometric gravitational wave detectors, Ph. D thesis (2009) pp.31-118
    [25]R. M. Jones, Mechanics of composite materials, Taylor & Francis second edition (1999) pp.121-136
    [26]BO. Cho et al., Material characteristics of electrically tunable zirconium oxide thin films, J. Appl. Phys. 93 (2003) 745
    [27]B. Corain al., Metal nanoclusters in catalysis and materials science: The issue of size control, Elsevier (2008) chapter 6
    [28]A. Bendavid et al., Deposition and modification of titanium dioxide thin film by filtered arc deposition, Thin solid films 360 (2000) 241-249
    [29]D. R. Black et al., Standard reference material 640d for x-ray metrology, Official contribution of the NIST pp.172-179

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE