簡易檢索 / 詳目顯示

研究生: 蔡欣蓉
Tsai, Hsin Jung
論文名稱: 群聚奈米碳管的氧氣吸附與電漿誘發異質接面性質
Oxygen adsorption and plasma-induced heter-junction of aggregated carbon nanotubes
指導教授: 徐文光
Hsu, Wen Kuang
口試委員: 林樹均
Lin, Su Jien
郭信甫
Kuo, Hsin Fu
許景棟
Hsu, Ching Tung
呂昇益
Lu, Sheng Yi
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 72
中文關鍵詞: 奈米碳管氧氣吸附二極體
外文關鍵詞: carbon nanotube, oxygen adsorption, diode
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管是廣泛被應用的一維奈米材料,氣體吸附、表面修飾與異質參雜都對奈米碳管的物理與化學性質有很大的影響。過去的文獻都著重於’’單根奈米碳管’’研究,但實際應用上卻鮮少只使用單根奈米碳管,例如:以奈米碳管塗佈的透明導電薄膜或是奈米碳管強化的複合材料。本論文以多根奈米碳管(奈米碳管薄膜、陣列奈米碳管束)製作氣敏元件,討論奈米碳管間的電子傳遞行為,並以第一原理模擬計算討論其理論機制。此外,藉由局部的表面改質讓奈米碳管兩端具有不同的電子結構,利用此特性製作出有整流效果的奈米碳管元件。
    第一章 首先簡介奈米碳管的基本性質與奈米碳管的表面改質。且簡述理論模擬之發展與原理。
    第二章 在進入主題前,本章節先介紹實驗設置以及所使用的儀器、實驗步驟與模擬結構設置與方法。
    第三章 此章節以陣列的奈米碳管製作氣敏元件,藉由改變有序排列的奈米碳管與金屬電極的接觸方向探討氧氣對奈米碳管間電子傳遞的影響。並利用氮氣電漿改質奈米碳管結構,進一步的提高元件的氣敏性。
    第四章 在本章節利用陣列奈米碳管有序方向的特性,使用氮氣電漿將奈米碳管的一端參雜氮原子,讓成束的奈米碳管兩端具有不同的電子結構,且利用此結構製作出有整流效果的奈米碳管元件。
    第五章 總結以上各章節的結果。


    Carbon nanotubes, known as one-dimensional (1D) nanostructures, have drawn much attention in recent years and their electron structure can be changed by gas adsorption, surface modification and heteroatom injection. The current applications however often focus on bundled carbon nanotubes, such as flexible, transparent and conducting films are made by coatings of carbon nanotubes onto plastic substrates. Carbon nanotubes can also be used as reinforcing fillers to improve electrical and thermal properties of polymer composites. In this thesis, gas sensors are fabricated by aggregated nanotubes to probe charge transfer between tubes and sensing mechanism is verified by ab-initio calculations. Furthermore, we synthesize nitrogen-doped carbon nanotube to create on-tube Schottky junction devices.
    Chapter 1 introduces the background and property of carbon nanotubes, surface modification for carbon nanotube and the simulation system.
    Chapter 2 describes experimental setups、characterization techniques and simulation methods.
    Chapter 3 discusses the oxygen sensing mechanism of carbon nanotubes. In this work, devices are fabricated by carbon nanotubes arranged in different fashions with respect to electrodes. Electrical measurements reveal intercalated molecules acting as charge carriers between tubes. Ab-initio calculation supports dynamic intercalation and charge transfer through bouncing of O2 between tubes.
    Chapter 4 aligned multi-walled CNTs are built to exhibit diode behavior by N2 plasma treatments. Surface modification for carbon nanotubes is studied by material analysis and ab-initio calculation. The simple fabrication of device without lift-off process is provided, and the parallel combination of a bundle of CNTs can promote output current.
    Chapter 5 concludes the experimental results.

    Contents Abstract………………………..……………………………………………………. I Contents……………………..………………………………………………………Ⅳ Figure Captions……………………………………………………………….……Ⅶ Table list……………………………………………………………………………..Ⅹ Chapter 1 Introduction 1-1 Structure of carbon nanotubes……………………………………………………. 1 1-2 Electronic properties of carbon nanotubes……………………………………….. 5 1-3 Absorption on carbon nanotubes…………………………………………………. 9 1-3-1 Description to interactions of molecules and carbon nanotubes………….. 9 1-3-2 Adsorption of Oxygen Molecules on Carbon Nanotubes………………...11 1-4 Chemical properties of CNTs……………………………………………….........14 1-4-1 Electrical properties of doped carbon nanotubes………………………....14 1-4-2 Oxygen Plasma Functionalization ………………………………………..15 1-4-3 Nitrogen Plasma Functionalization……………………………………….17 1-5 Syntheses of carbon nanotubes …………………………………………………..19 1-6 Density Functional Theory and molecular dynamic simulations………………...24 Chapter 2 Experimental Section 2-1 Instrumental characterization…………………………………………………….26 2-1-1 Pyrolysis System………………………………………………………….26 2-1-2 Low Temperature Vacuum System……………………………………….26 2-1-3 Low Pressure DC Glow Discharge N2 Plasma…………………………..26 2-1-4 Electrical General Source Meter - Keithley 2400………………………..27 2-1-5 Multi-Probe Nano-Electronics Measurement System……………………27 2-1-6 Field Emission Scanning Electron Microscope (Joel, JSM-6500F)……...27 2-1-7 Raman Spectrometer (HORIBA, HR800)………………………………..28 2-1-8 Electron Spectroscopy for Chemical Analysis (ULVAC-PHI PHI 5000) …………………………………………………………………………………..28 2-1-9 Simulation Software - Materials Studio 4.2……………………………...31 2-2 Sample preparations………………………………………………………...31 2-2-1 Production of aligned MWCNTs…………………………………………31 2-2-2 N2 plasma treatment……………………………………………………...31 2-3 Computer Simulation Setups…………………………………………………….32 2-3-1 Computer Simulation Setups for chapter 3………………………………32 2-3-2 Computer Simulation Setups for chapter 4……………………………….33 Chapter 3 Extraction of intercalated O2 from aligned carbon nanotubes: the breaking of intertube paths and exponential change in resistance 3-1 Introduction………………………………………………………………………35 3-2 Devices fabrication………………………………………………………………36 3-3 Results and Discussion…………………………………………………………..39 3-3-1 Oxygen sensing measurement of D1, D2, D3, DA and DB……………...39 3-3-2 Sensing mechanism of carbon nanotubes………………………………...41 3-3-3 Sensing mechanism of defective carbon nanotubes……………………47 Chapter 4 Fabrication of on-tube diodes by N2 plasma treatments 4-1 Introduction………………………………………………………………………50 4-2 Results and Discussion…………………………………………………………..51 4-2-1 Surface analyses (Raman and XPS)……………………………………...51 4-2-2 The electron structure simulation for the N-doped CNTs………………...53 4-2-3 CNT-base diode…………………………………………………………..58 Chapter 5 Conclusion……………………………………………………………….63 References…………………………………………………………………………...64 Figure Captions Fig. 1.1 Structures of (a) C60, (b) C70, (c) CNT, (d) graphene, (e) graphite and (f) diamond………………………………………………………………………………..1 Fig. 1.2 Schematic representation of 2D honeycomb lattices. The figure is constructed for tube. The OA and OB lines define chiral vector and the translational vector T of carbon nanotubes. A CNT is formed as O and A and, B and B' are connected individually…………………………………………………………………………….3 Fig. 1.3 (a) Armchair CNT with , (b) zigzag CNT with , and (c) helix CNT with ……………………………………………………..4 Fig. 1.4 Structures of (a) SWCNT, (b) DWCNT, and (c) MWCNT…………………..5 Fig. 1.5 (a) A zigzag tube with tubule axis orientation, (b) wave vector incidents into nanotube with n=6 in the first BZ, (c) band structure for n = 3k and (d) n ≠ 3k………6 Fig. 1.6 (a) Armchair tube with tubule axis orientation. (b) wave vector incidents into nanotube with n=4 at the first BZ (c) band structure…………………………………7 Fig. 1.7 Band structure and DOS of SWCNT……………………………………….8 Fig. 1.8 Band structure and DOS of SWCNT………………………………………9 Fig 1.9 schematic diagrams of small molecules exohedrally (blue) and endohedrally (red) adsorbed on nanotubes of different diameters (dmolecule is van der waals diameter of molecule, and dNT is internal van der waals diameter of nanotube): (a) dNT<dmolecule, (b) dNT~dmolecule, (c) dNT>dmolecule, (d) dNT>>dmolecule, (e) dNT~∞………...11 Fig. 1.10 Three steps of R increase for O2 desorption from aggregated tubes………13 Fig. 1.11 O2 adsorption sites in a carbon nanotube bundle…………………………..13 Fig. 1.12 XPS spectra of untreated MWCNTs (a) and MWCNTs treated with H2O plasma at 140 W and 135 Pa (b). Percentage area of different carbon–carbon and carbon–oxygen bonds as a function of plasma power at a constant pressure of 50 Pa (c)……………………………………………………………………………………16 Fig. 1.13 (a, b) N1s spectra of untreated and nitrogen-plasma treated MWCNTs, respectively. (c) Nitrogen concentrations at a constant power of 75 W against nitrogen pressure, (d) structural disorder with respect to the nitrogen concentration. The solid lines are drawn to guide the naked eyes……………………………………………...19 Fig. 1.14 Schematic representation of arc discharge equipment……………………..21 Fig. 1.15 Scheme of laser ablation equipment. A laser is aimed at a block of graphite and a Cu-made cooled is placed at the rear of furnace to collect SWCNTs…………22 Fig. 1.16 Scheme of pyrolysis equipment……………………………………………22 Fig. 1-17 Low-magnification SEM image of a film composed of aligned MWCNTs……………………………………………………………………………23 Fig. 1.18 Growth of aligned MWCNTs on Co-coated Si wafer……………………...23 Fig. 2.1 Scheme of pyrolysis system…………………………………………………28 Fig. 2.2 Picture of pyrolysis system…………………………………………………28 Fig. 2.3 Picture of low temperature vacuum system…………………………………29 Fig. 2.4 Scheme of low temperature vacuum system………………………………...24 Fig. 3.1 (a) Arrays of aligned MWCNTs. (b) Device fabrications…………………...36 Fig. 3.1 Tube orientations in (c) D1 and (d) D2. Grey regions in D1 and D2 denote silver painted tubes which lie on metal electrodes. Tubes between dashlines are silver-free and act as gas sensors……………………………………………………37 Fig. 3.2 (a) Fabrications of DA, (b) DB (lower left) and (c) ACNT controlled DA…37 Fig. 3.3 The time-evolved R profiles of (a) D1, (b) D2 and (c) D3 in vacuum and O2 atmosphere and corresponding R/Ro plots (d-f)…………………………………38 Fig. 3.4 (a) The time-evolved R change profiles of DA and DB in O2 evacuation, and (b) the R-ACNT plots of DA…………………………………………………………39 Fig. 3.5 (a) Mulliken charge density at O2 adsorbed and desorbed C-C bonds.(b) highlighted electron density difference at C atoms with and without O adsorption…………………………………………………………………………….41 Fig. 3.6 (a) The C profiles of D3 in O2 (red) and vacuum (dark). (b) The R/Ro-T profiles of D3 in O2 (blue) and vacuum (dark). Insert: the ln(R/Ro) vs.1/T×1000 plots fit with linear function………………………………………………………………42 Fig. 3.7 (a). Three (10,0) tubes in an amorphous cell with an O2 at tube groove. (b). Geometrically optimized tubes-O2 complex at 300K, (b) at 200 K, (c) at 90 K …...44 Fig. 3.8 Geometrically optimized tubes-(O2)50 complexes at 90 K (left), 200 K (middle) and 300 K (right)………………………………………………………...45 Fig. 3.9 R-P(O2) plots of D3 at 300, 400 and 500 K. Insert, magnified profile from circles………………………………………………………………………………...46 Fig. 3.10 XPS spectra of (a) untreated and (b) treated tubes. ……………………….47 Fig. 3.11 time-evovled R/Ro recording of untreated (dark) and treated tubes (blue) upon O2 introduction………………………………………………………………..48 Fig. 4.1 Raman spectroscopy of pristine and treated CNTs…………………………51 Fig. 4.2 XPS analysis of pristine and treated CNTs: (a) wide-scan, (b) C1s………...53 Fig. 4.2 XPS analysis of pristine and treated CNTs: (c) N1s, (d) O1s……………….54 Fig. 4.3 Electron density simulation of pristine and treated (8,0) CNTs……….........55 Fig. 4.4 Band structure simulation of pristine and treated (8,0) CNTs………………56 Fig. 4.5 Current-Voltage characteristic curve of p-type and diode-like CNTs……….58 Fig. 4.6 The schematic of Schottky and intratube junction…………………………..58 Fig. 4.7 carbon nanotube slab with 30 Å vacuum layer for work function simulaton……………………………………………………………………………..60 Fig. 4.8 (a) IV curve (insert, band diagram) and (b) XPS spectrum with different plasma treatment time………………………………………………………………..61 Table list Table 1. The deq between CNT centroid and O2 at 90-300 K………………………43

    1. DRESSELHAUS, M.S., G. DRESSELHAUS, and P.C. EKLUND, Science of Fullerenes and Carbon Nanotubes, 1996, Academic Press.
    2. Dresselhaus, M.S. and P.C. Eklund, Phonons in carbon nanotubes. ADVANCES IN PHYSICS, 2000. 49: p. 705.
    3. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56.
    4. Yakobson, B.I. and R.E. Smalley, Fullerene Nanotubes: C1,000,000 and Beyond. American Scientist, 1997. 85: p. 324.
    5. Kukovitsky, E.F., et al., Correlation between metal catalyst particle size and carbon nanotube growth. 2002. 355: p. 497.
    6. Kanzow, H., P. Bernier, and A. Ding, Lower limit for single-wall carbon nanotube diameters from hydrocarbons and fullerenes. Applied Physics A, 2002. 74: p. 411.
    7. Kim, L., et al., Diameter control of carbon nanotubes by changing the concentration of catalytic metal ion solutions. Carbon, 2005. 43: p. 1453.
    8. Choi, Y.C., et al., Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2000. 88: p. 4898.
    9. Ajayan, P.M. and S. Iijima, Smallest carbon nanotube. Nature, 1992. 358.
    10. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363: p. 603.
    11. Charlier, J.-C. and J.-P. Michenaud, Energetics of multilayered carbon tubules. Physical Review Letters, 1993. 70: p. 1858.
    12. Wang, N., et al., Materials science: Single-walled 4 Å carbon nanotube arrays. Nature, 2000. 408: p. 50.
    13. Yang, Q.H., et al., Large-Diameter Single-Walled Carbon Nanotubes Synthesized by Chemical Vapor Deposition. Advanced Materials, 2003. 15: p. 792.
    14. Saito, Y. and T. Yoshikawa, Interlayer spacings in carbon nanotubes. Physical Review B, 1993. 48: p. 1907.
    15. Saito, Y., T. Yoshikawa, and M. Inagaki, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chemical Physics Letters, 1993. 204: p. 277.
    16. Kiang, C.H., et al., Size Effects in Carbon Nanotubes. Physical Review Letters, 1998. 81: p. 1869.
    17. Coulson, C.A., Valence. 1952: Oxiford University Press, Oxford.
    18. Lu, X. and Z. Chen, Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes. Chemical reviews, 2005. 105: p. 3643.
    19. Aplin, K.L. and R.G. Harrison, A computer-controlled Gerdien atmospheric ion counter. Review of Scientific Instruments, 2000. 71: p. 3037.
    20. Yamabe, T., K. Fukui, and K. Tanaka, The Science and Technology of Carbon Nanotubes, K. Tanaka, Editor 1999, Elsevier Science.
    21. Chopra, N.G., et al., Fully collapsed carbon nanotubes. Nature, 1995. 377(6545): p. 135-138.
    22. Baughman, R.H., A.A. Zakhidov, and W.A.d. Heer, Carbon nanotubes-the route toward application. Science, 2002. 297: p. 787.
    23. Hsu, C.T., Phone and adsorption properties of aggregated carbon nanotubes and novel productions for tubular graphite and individual graphenes. 2008: NTHU MSE Ph.D Thesis.1-3
    24. Girifalco, L.A. and M. Hodak, Van der Waals binding energies in graphitic structures. Physical Review B, 2002. 65(12): p. 125404.
    25. Hirsch, A., Functionalization of Single-Walled Carbon Nanotubes. Angew. Chem., 2002. 41(11): p. 1853-1859.
    26. Collins, P.G., et al., Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science, 2000. 287(5459): p. 1801-1804.
    27. Zhao, J.J., et al., Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 2002. 13(2): p. 195-200.
    28. Jhi, S.H., S.G. Louie, and M.L. Cohen, Electronic properties of oxidized carbon nanotubes. Physical Review Letters, 2000. 85(8): p. 1710-1713.
    29. Kong, J., et al., Nanotube Molecular Wires as Chemical Sensors. Science, 2000. 287(5453): p. 622-625.
    30. Kuo, H.-F., et al., Gas sensing improvement of carbon nanotubes by NH4OH-flash treatment: a nondestructive purification technique. Journal of Materials Chemistry, 2007. 17(34): p. 3581-3584.
    31. Snow, E.S. and F.K. Perkins, Capacitance and Conductance of Single-Walled Carbon Nanotubes in the Presence of Chemical Vapors. Nano Letters, 2005. 5(12): p. 2414-2417.
    32. Watts, P.C.P., et al., Are Bulk Defective Carbon Nanotubes Less Electrically Conducting? Nano Letters, 2003. 3(4): p. 549-553.
    33. Adu, C.K.W., et al., Carbon nanotubes: A thermoelectric nano-nose. Chemical Physics Letters, 2001. 337(1–3): p. 31-35.
    34. Fujiwara, A., et al., Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letters, 2001. 336(3–4): p. 205-211.
    35. Girifalco, L.A., M. Hodak, and R.S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B, 2000. 62(19): p. 13104-13110.
    36. Dresselhaus, M.S., Intercalation In Layered Materials. MRS Bulletin, 1987. 12(03): p. 24-28.
    37. Dresselhaus, M.S., G. Dresselhaus, and P. Eklund, Science of fullerenes and carbon nanotubes. 1996.
    38. Lee, R.S., et al., Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 1997. 388(6639): p. 255-257.
    39. Ruzicka, B., et al., Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films. Physical Review B, 2000. 61(4): p. R2468-R2471.
    40. Jo, C., C. Kim, and Y.H. Lee, Electronic properties of K-doped single-wall carbon nanotube bundles. Physical Review B, 2002. 65(3): p. 035420.
    41. Kong, J., et al., Alkaline metal-doped n-type semiconducting nanotubes as quantum dots. Applied Physics Letters, 2000. 77(24): p. 3977-3979.
    42. Baierle, R.J., et al., Electronic and structural properties of silicon-doped carbon nanotubes. Physical Review B, 2001. 64(8): p. 085413.
    43. Liu, K., et al., Electrical transport in doped multiwalled carbon nanotubes. Physical Review B, 2001. 63(16): p. 161404.
    44. Barone, V., et al., Screened exchange hybrid density-functional study of the work function of pristine and doped single-walled carbon nanotubes. The Journal of Chemical Physics, 2006. 124(2): p. 024709.
    45. Glerup, M., et al., Synthesis of N-doped SWNT using the arc-discharge procedure. Chemical Physics Letters, 2004. 387(1–3): p. 193-197.
    46. Kim, S.Y., et al., N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition. Chemical Physics Letters, 2005. 413(4–6): p. 300-305.
    47. Ayala, P., et al., Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock. The Journal of Physical Chemistry C, 2007. 111(7): p. 2879-2884.
    48. Hussain, S., et al., Functionalization of carbon nanotubes by water plasma. Nanotechnology, 2012. 23(38): p. 385604.
    49. Gogotsi, Y., Nanotubes and Nanofibers. CRC Taylor & Francis, 2006: p. p36.
    50. Chen, C., et al., Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave-Excited Surface-Wave Plasma Treatment. The Journal of Physical Chemistry C, 2009. 113(18): p. 7659-7665.
    51. Zhao, B., et al., Surface functionalization of vertically-aligned carbon nanotube forests by radio-frequency Ar/O2 plasma. Carbon, 2012. 50(8): p. 2710-2716.
    52. Zanolli, Z., et al., Gas Sensing with Au-Decorated Carbon Nanotubes. ACS Nano, 2011. 5(6): p. 4592-4599.
    53. Hulicova-Jurcakova, D., et al., Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. Advanced Functional Materials, 2009. 19(3): p. 438-447.
    54. Chen, C., et al., Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water. Applied Physics Letters, 2010. 96(13): p. 131504.
    55. Hussain, S., et al., Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. Journal of Materials Science, 2013. 48(21): p. 7620-7628.
    56. Jones, C. and E. Sammann, The effect of low power plasmas on carbon fibre surfaces. Carbon, 1990. 28(4): p. 509-514.
    57. Wang, H., et al., Effect of the Pre-Treatment of Carbon Black Supports on the Activity of Fe-Based Electrocatalysts for the Reduction of Oxygen. The Journal of Physical Chemistry B, 1999. 103(12): p. 2042-2049.
    58. Biniak, S., et al., The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon, 1997. 35(12): p. 1799-1810.
    59. Rao, A.M., et al., Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science, 1997. 275: p. 187.
    60. Cheng, H.M., et al., Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters, 1998. 289: p. 602.
    61. Colomer, J.-F., et al., Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical Physics Letters, 2000. 317: p. 83.
    62. Colomer, J.-F., et al., Characterization of single-wall carbon nanotubes produced by CCVD method. Chemical Physics Letters, 2001. 345: p. 11.
    63. Berger, C., et al., Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. Journal of Physical Chemistry B, 2001. 108: p. 19912.
    64. Hafner, J.H., et al., Catalytic growth of single-wall carbon nanotubes from metal particles. Chemical Physics Letters, 1998. 296: p. 195.
    65. Kong, J., A.M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 1998. 292: p. 567.
    66. Tang, S., et al., Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical Physics Letters, 2001. 350: p. 19.
    67. KRÄTSCHMER, W., et al., Solid C60: a new form of carbon. Nature, 1990. 347: p. 354.
    68. Terranova, M.L., V. Sessa, and M. Rossi, The World of Carbon Nanotubes: An Overview of CVD Growth Methodologies. Chemical Vapor Deposition, 2006. 12: p. 315.
    69. Pan, Z.W., et al., Very long carbon nanotubes. Nature, 1998. 394: p. 631-632.
    70. Li, W.Z., et al., Large-Scale Synthesis of Aligned Carbon Nanotubes. Science, 1996. 274: p. 1701-1703.
    71. Andrews, R., et al., Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chemical Physics Letters, 1999. 303: p. 467-474.
    72. Bower, C., et al., Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Applied Physics Letters, 2000. 77(17): p. 2767-2769.
    73. Williams, E.R., The tripole structure of thunderstorms. Journal of Geophysical Research: Atmospheres, 1989. 94(D11): p. 13151-13167.
    74. Hartree, D.R., The wave mechanics of an atom with a non-coulomb central field. Part I - Theory and Methods. Proc. Camb. Phil. Soc., 1928. 24: p. 89-110.
    75. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
    76. Kohn, W., Variational Methods for Periodic Lattices. Physical Review, 1952. 87(3): p. 472-481.
    77. Kohn, W. and J.M. Luttinger, Quantum Theory of Electrical Transport Phenomena. Physical Review, 1957. 108(3): p. 590-611.
    78. Kohn, W., Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian. Physical Review, 1959. 115(6): p. 1460-1478.
    79. Kohn, W. and J.M. Luttinger, Ground-State Energy of a Many-Fermion System. Physical Review, 1960. 118(1): p. 41-45.
    80. Kohn, W., Y. Meir, and D.E. Makarov, van der Waals Energies in Density Functional Theory. Physical Review Letters, 1998. 80(19): p. 4153-4156.
    81. Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253-1266.
    82. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
    83. Allen, M.P. and D.J. Tildesley, Computer Simulation of Liquids, 1987, Oxford Science Publications.
    84. Ding, J.J., C.L. Lu, and W.K. Hsu, Capacitive carbon nanotube networks in polymer composites. Applied Physics Letters, 2011. 99: p. 033111.
    85. Lin, Y.-H., et al., Why aggregated carbon nanotubes exhibit low quantum efficiency. Physical Chemistry Chemical Physics, 2011. 13(15): p. 7149-7153.
    86. Sun, H., COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. The Journal of Physical Chemistry B, 1998. 102(38): p. 7338-7364.
    87. Tersoff, J. and R.S. Ruoff, Structural Properties of a Carbon-Nanotube Crystal. Physical Review Letters, 1994. 73(5): p. 676-679.
    88. Perdew, J.P.B., K.; Ernzerhof, M, Generalized Gradient Approximation Made Simple. PRL, 1996. 77:p. 3865
    89. Zhou, G. and Y. Kawazoe, First-principles study on work function of carbon nanotubes. Physica B: Condensed Matter, 2002. 323(1–4): p. 196-198.
    90. Gholizadeh, R. and Y.-X. Yu, Work Functions of Pristine and Heteroatom-Doped Graphenes under Different External Electric Fields: An ab Initio DFT Study. The Journal of Physical Chemistry C, 2014. 118(48): p. 28274-28282.
    91. Lu, C.L., et al., Use of aligned carbon nanotubes as electric field sensors. Progress in Electromagnetics Research-Pier, 2013. 137: p. 439-452.
    92. Derycke, V., et al., Controlling doping and carrier injection in carbon nanotube transistors. Applied Physics Letters, 2002. 80(15): p. 2773-2775.
    93. Baumgartner, G., et al., Hall effect and magnetoresistance of carbon nanotube films. Physical Review B, 1997. 55(11): p. 6704-6707.
    94. Li, C.C., et al., Creation of interfacial phonons by carbon nanotube-polymer coupling. Physical Chemistry Chemical Physics, 2009. 11(29): p. 6034-6037.
    95. Lien, D.H., et al., Photocurrent amplification at carbon nanotube-metal contacts. Advanced Materials, 2006. 18(1): p. 98-103.
    96. Chin, W., C.-L. Lu, and W.-K. Hsu, A radiofrequency induced intra-band transition in carbon nanotubes. Carbon, 2011. 49(8): p. 2648-2652.
    97. Terrones, M., et al., Carbon Nitride Nanocomposites: Formation of Aligned CxNy Nanofibers. Advanced Materials, 1999. 11(8): p. 655-658.
    98. Li, H.C., et al., Conductivity enhancement of carbon nanotube composites by electrolyte addition. Applied Physics Letters, 2008. 93(3).
    99. Javey, A., et al., Ballistic carbon nanotube field-effect transistors. Nature, 2003. 424(6949): p. 654-657.
    100. Fuhrer, M.S., et al., High-Mobility Nanotube Transistor Memory. Nano Letters, 2002. 2(7): p. 755-759.
    101. Satishkumar, B.C., et al., Y-junction carbon nanotubes. Applied Physics Letters, 2000. 77(16): p. 2530-2532.
    102. Yao, Z., et al., Carbon nanotube intramolecular junctions. Nature, 1999. 402(6759): p. 273-276.
    103. Nosho, Y., et al., Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors. Nanotechnology, 2006. 17(14): p. 3412.
    104. Wang, C., et al., Metal Contact Engineering and Registration-Free Fabrication of Complementary Metal-Oxide Semiconductor Integrated Circuits Using Aligned Carbon Nanotubes. ACS Nano, 2011. 5(2): p. 1147-1153.
    105. Boutroy, N., et al., Hydrogenated amorphous carbon film coating of PET bottles for gas diffusion barriers. Diamond and Related Materials, 2006. 15(4–8): p. 921-927.
    106. Antonov, R.D. and A.T. Johnson, Subband Population in a Single-Wall Carbon Nanotube Diode. Physical Review Letters, 1999. 83(16): p. 3274-3276.
    107. Bosnick, K., N. Gabor, and P. McEuen, Transport in carbon nanotube p-i-n diodes. Applied Physics Letters, 2006. 89(16): p. 163121.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE