簡易檢索 / 詳目顯示

研究生: 蕭義勳
Shiao, Yi-Syun
論文名稱: 適體修飾之金奈米粒子於癌症標靶治療之應用
Aptamer Functionalized Gold Nanoparticles for Targeted Cancer Therapy
指導教授: 黃郁棻
口試委員: 孫毓璋
黃志清
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 適體金奈米粒子癌症治療
外文關鍵詞: Aptamer, Gold nanoparticles, Cancer therapy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用金奈米粒子 (Gold nanoparticle, Au NP) 結合一雙股結構之核酸適體ds(sgc8c),開發成新穎之奈米藥物載體,應用於癌細胞的標靶治療。ds(sgc8c)中的適體結構 (sgc8c aptamer),可用來辨識跨膜蛋白 (Transmembrane protein)─protein tyrosine kinase 7 (PTK7),此蛋白在急性淋巴型T細胞白血病 (Acute lymphoblastic leukemia, ALL) 的癌細胞株CCRF-CEM細胞膜表面,有高度的表現量。此外由適體結構延伸而出的雙股核酸 (DNA) 序列,含有連續且重複的CG鹼基對,能嵌合 (Intercalation) 數個化療藥物「小紅莓」(Doxorubicin) 分子。定量結果顯示,一顆粒徑為13奈米的金粒子表面,可修飾61 ± 10條雙股DNA,以及280 ± 23個Doxorubicin分子,具有良好的載藥效率。本研究開發的奈米藥物載體,能藉由適體與目標細胞進行專一性作用,降低抗癌藥物對非目標細胞的毒性;此藥物載體平台系統,亦可依據特定癌細胞株,搭配不同適體,應用於多種癌細胞之標靶治療。


    摘要 I Abstract II 謝誌 III 總目錄 IV 圖目錄 VII 表目錄 IX 第一章 序論 1 1.1 癌症與治療 1 1.1.1癌症 1 1.1.2白血病 1 1.1.3臨床上的治療方式 2 1.1.4癌症化學療法 4 1.2 生醫奈米材料的應用 8 1.2.1 生醫奈米材料 8 1.2.2 金奈米粒子之應用 12 1.3 癌症之標靶治療 15 1.4 核苷酸序列結合奈米粒子的應用 20 1.4.1以金奈米粒子穩定DNA 20 1.4.2奈米粒子與DNA在藥物傳遞和顯影技術上的發展 21 1.5 研究動機與目的 27 第二章 材料與方法 32 2.1 實驗藥品 32 2.2 奈米藥物載體的合成 32 2.2.1 合成13-nm之金奈米粒子 32 2.2.2 設計DNA 鹼基序列 33 2.2.3 將dsDNA修飾於金奈米粒子表面 34 2.2.4 裝載化療藥物 35 2.3 奈米藥物載體的特性鑑定 35 2.3.1 ds(control) 半溶解溫度 (Tm) 的量測 35 2.3.2 ds(sgc8c) 的定量分析 36 2.3.3 藥物載體之電位 (zeta potential) 分析 36 2.3.4 藥物載體與化療藥物之親和性量測 37 2.3.5 藥物載體之穩定度測定 37 2.4 細胞培養步驟 37 2.4.1 細胞培養基配製 37 2.4.2 人類急性白血癌細胞的培養 38 2.5 以藥物載體進行癌症治療 38 2.5.1 利用流式細胞儀測定藥物載體標定能力 38 2.5.2 暗視野顯微鏡觀測細胞與藥物載體的作用 39 2.5.3 測定細胞對金奈米粒子的吞噬量 40 2.5.4 癌細胞存活率分析 41 第三章 結果與討論 42 3.1 藥物載體與藥物的作用 42 3.1.1 Dox穩定dsDNA的結構 42 3.1.2 藉由金奈米粒子提升dsDNA與Dox的親和性 42 3.2 以金奈米粒子為基礎之載體性質的合成與鑑定 45 3.2.1 藥物載體的合成與dsDNA修飾量 45 3.2.2 藥物載體之光學特性與飽和藥物承載量 46 3.2.3 藥物載體之水合半徑和Zeta電位分析 46 3.3 藥物載體與目標細胞CCRF-CEM之專一性作用 48 3.3.1 載體與目標細胞的標靶性與親和能力 48 3.4 藥物經載體傳遞與細胞的反應分析 51 3.4.1 不同細胞株的毒性試驗 51 3.4.2 不同細胞株的藥物螢光反應 52 第四章 結論 54 參考文獻 64

    1. Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. 2010; Vol. 127, p 2893-917.
    2. Gu, Y. L., Spiritual Distress Experienced by Cancer Patients-Develop a Spiritual Care for Cancer Patients. TW. J. Hosp. Palliat. Care 2005, 10, 221-223.
    3. Cortes, J. E.; Kantarjian, H. M., Acute Lymphoblastic Leukemia a Comprehensive Review with Emphasis on Biology and Therapy. Cancer 1995, 76, 2393-2417.
    4. Pelissari, D. M.; Barbieri, F. E.; Wünsch Filho, V., Magnetic Fields and Acute Lymphoblastic Leukemia in Children: A Systematic Review of Case-Control Studies. Cad. Saude Publica 2009, 25, 441-452.
    5. Kwon, M.; Yoon, C.-S.; Fitzpatrick, S.; Kassam, G.; Graham, K. S.; Young, M. K.; Waisman, D. M., p22 Is a Novel Plasminogen Fragment with Antiangiogenic Activity. Biochemistry (Mosc). 2001, 40, 13246-13253.
    6. Larsen, A. K.; Escargueil, A. E.; Skladanowski, A., Catalytic Topoisomerase II Inhibitors in Cancer Therapy. Pharmacol. Ther. 2003, 99, 167-181.
    7. Green, P. S.; Leeuwenburgh, C., Mitochondrial Dysfunction is an Early Indicator of Doxorubicin-induced Apoptosis. Biochim. Biophys 2002, 1588, 94-101.
    8. Adiseshaiah, P. P.; Hall, J. B.; McNeil, S. E., Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanotechnol. 2010, 2, 99-112.
    9. Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M., Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer. Res. 2008, 14, 1310-1316.
    10. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an Emerging Platform for Cancer Therapy. Nat. Nano. 2007, 2, 751-760.
    11. Lu, J.; Owen, S. C.; Shoichet, M. S., Stability of Self-Assembled Polymeric Micelles in Serum. Macromolecules 2011, 44, 6002-6008.
    12. Xie, J.; Lee, S.; Chen, X., Nanoparticle-Based Theranostic Agents. Adv. Drug Del. Rev. 2010, 62, 1064-1079.
    13. Duguet, E.; Vasseur, S.; Mornet, S.; Devoisselle, J.-M., Magnetic Nanoparticles and Their Applications in Medicine. Nanomedicine 2006, 1, 157-168.
    14. Zhang, L.; Yu, F.; Cole, A. J.; Chertok, B.; David, A. E.; Wang, J.; Yang, V. C., Gum Arabic-Coated Magnetic Nanoparticles for Potential Application in Simultaneous Magnetic Targeting and Tumor Imaging. AAPS J. 2009, 11, 693-9.
    15. Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated Quantum Dots for in Vivo Molecular and Cellular Imaging. Adv. Drug Del. Rev. 2008, 60, 1226-1240.
    16. Jana, N. R.; Earhart, C.; Ying, J. Y., Synthesis of Water-Soluble and Functionalized Nanoparticles by Silica Coating. Chem. Mater. 2007, 19, 5074-5082.
    17. Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y., Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small 2010, 6, 1952-1967.
    18. Li, B.; Du, Y.; Dong, S., DNA Based Gold Nanoparticles Colorimetric Sensors for Sensitive and Selective Detection of Ag(I) Ions. Anal. Chim. Acta 2009, 644, 78-82.
    19. Geso, M., Gold Nanoparticles: a new X-ray Contrast Agent. Br. J. Radiol. 2007, 80, 64-65.
    20. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S., Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging. J. Am. Chem. Soc. 2007, 129, 7661-7665.
    21. Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S., In Vivo Tumor Targeting and Spectroscopic Detection with Surface-Enhanced Raman Nanoparticle Tags. Nat. Biotech. 2008, 26, 83-90.
    22. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.-H.; Yoo, K.-H., Multifunctional Nanoparticles for Combined Doxorubicin and Photothermal Treatments. ACS Nano 2009, 3, 2919-2926.
    23. James, F. H.; et al., The use of Gold Nanoparticles to Enhance Radiotherapy in Mice. Phys. Med. Biol. 2004, 49, N309.
    24. Carter, J. D.; Cheng, N. N.; Qu, Y.; Suarez, G. D.; Guo, T., Nanoscale Energy Deposition by X-ray Absorbing Nanostructures. J. Phys. Chem. B 2007, 111, 11622-11625.
    25. Massich, M. D.; Giljohann, D. A.; Schmucker, A. L.; Patel, P. C.; Mirkin, C. A., Cellular Response of Polyvalent Oligonucleotide-Gold Nanoparticle Conjugates. ACS Nano 2010, 4, 5641-5646.
    26. Alkilany, A.; Murphy, C., Toxicity and Cellular Uptake of Gold Nanoparticles: What We Have Learned so Far. J. Nanopart. Res. 2010, 12, 2313-2333.
    27. Dey, A. K.; Khati, M.; Tang, M.; Wyatt, R.; Lea, S. M.; James, W., An Aptamer That Neutralizes R5 Strains of Human Immunodeficiency Virus Type 1 Blocks gp120-CCR5 Interaction. J. Virol. 2005, 79, 13806-13810.
    28. Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A., Gold Nanoparticles for Biology and Medicine. Angew. Chem. Int. Ed. 2010, 49, 3280-3294.
    29. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.
    30. Gopinath, S., Methods Developed for SELEX. Anal. Bioanal. Chem. 2007, 387, 171-182.
    31. Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W., Aptamers Evolved from Live Cells as Effective Molecular Probes for Cancer Study. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11838-11843.
    32. Thiel, K. W.; Giangrande, P. H., Therapeutic Applications of DNA and RNA Aptamers. Oligonucleotides 2009, 19, 209-222.
    33. Group, M. D. R. S., A Phase II Randomized Double-Masked Trial of Pegaptanib, an Anti-Vascular Endothelial Growth Factor Aptamer, for Diabetic Macular Edema. Ophthalmol. 2005, 112, 1747-1757.
    34. Kim, D.; Jeong, Y. Y.; Jon, S., A Drug-Loaded Aptamer−Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS Nano 2010, 4, 3689-3696.
    35. Xu, Y.; Cheng, G.; He, P.; Fang, Y., A Review: Electrochemical Aptasensors with Various Detection Strategies. Electroanalysis 2009, 21, 1251-1259.
    36. Lee, J.-O.; So, H.-M.; Jeon, E.-K.; Chang, H.; Won, K.; Kim, Y., Aptamers as Molecular Recognition Elements for Electrical Nanobiosensors. Anal. Bioanal. Chem. 2008, 390, 1023-1032.
    37. Pendergrast, P. S.; Marsh, H. N.; Grate, D.; Healy, J. M.; Stanton, M., Nucleic Acid Aptamers for Target Validation and Therapeutic Applications. J Biomol Tech. 2005, 16, 224-34.
    38. Carter, P. J., Potent Antibody Therapeutics by Design. Nat. Rev. Immunol. 2006, 6, 343-357.
    39. Matsuoka, Y.; Onodera, T.; Kojima, T.; Chang, Y.; Chen, W.-Y.; Imanaka, T.; Fukushima, H.; Higuchi, A., Novel Enzymatic Properties of DNA-Pt Complexes. Biomacromolecules 2007, 8, 2684-2688.
    40. Macanovic, M.; Lachmann, P. J., Measurement of Deoxyribonuclease I (DNase) in the Serum and Urine of Systemic lupus Erythematosus (SLE)-Prone NZB/NZW Mice by a New Radial Enzyme Diffusion Assay. Clin. Exp. Immunol. 1997, 108, 220-226.
    41. Murphy, E.; Steenbergen, C., Ion Transport and Energetics During Cell Death and Protection. Physiol. 2008, 23, 115-123.
    42. Lytton-Jean, A. K. R.; Mirkin, C. A., A Thermodynamic Investigation into the Binding Properties of DNA Functionalized Gold Nanoparticle Probes and Molecular Fluorophore Probes. J. Am. Chem. Soc. 2005, 127, 12754-12755.
    43. Seferos, D. S.; Prigodich, A. E.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A., Polyvalent DNA Nanoparticle Conjugates Stabilize Nucleic Acids. Nano Lett. 2008, 9, 308-311.
    44. Seferos, D. S.; Giljohann, D. A.; Hill, H. D.; Prigodich, A. E.; Mirkin, C. A., Nano-Flares: Probes for Transfection and mRNA Detection in Living Cells. J. Am. Chem. Soc. 2007, 129, 15477-15479.
    45. Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A., Aptamer Nano-flares for Molecular Detection in Living Cells. Nano Lett. 2009, 9, 3258-3261.
    46. Han, G.; You, C.-C.; Kim, B.-j.; Turingan, R. S.; Forbes, N. S.; Martin, C. T.; Rotello, V. M., Light-Regulated Release of DNA and Its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles. Angew. Chem. 2006, 118, 3237-3241.
    47. Guo, S.; Huang, Y.; Jiang, Q.; Sun, Y.; Deng, L.; Liang, Z.; Du, Q.; Xing, J.; Zhao, Y.; Wang, P. C.; Dong, A.; Liang, X.-J., Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS Nano 2010, 4, 5505-5511.
    48. Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C., Quantum Dot−Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett. 2007, 7, 3065-3070.
    49. Wang, A. Z.; Bagalkot, V.; Vasilliou, C. C.; Gu, F.; Alexis, F.; Zhang, L.; Shaikh, M.; Yuet, K.; Cima, M. J.; Langer, R.; Kantoff, P. W.; Bander, N. H.; Jon, S.; Farokhzad, O. C., Superparamagnetic Iron Oxide Nanoparticle–Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy. ChemMedChem 2008, 3, 1311-1315.
    50. Frederick, C. A.; Williams, L. D.; Ughetto, G.; Van der Marel, G. A.; Van Boom, J. H.; Rich, A.; Wang, A. H. J., Structural Comparison of Anticancer Drug-DNA Complexes: Adriamycin and Daunomycin. Biochemistry (Mosc). 1990, 29, 2538-2549.
    51. Chaires, J. B.; Herrera, J. E.; Waring, M. J., Preferential Binding of Daunomycin to 5'TACG and 5'TAGC Sequences Revealed by Footprinting Titration Experiments. Biochemistry (Mosc). 1990, 29, 6145-6153.
    52. Kellogg, G. E.; Scarsdale, J. N.; Fornari, F. A., Identification and Hydropathic Characterization of Structural Features Affecting Sequence Specificity for Doxorubicin Intercalation into DNA Double-Stranded Polynucleotides. Nucleic Acids Res. 1998, 26, 4721-4732.
    53. Bagalkot, V.; Farokhzad, O. C.; Langer, R.; Jon, S., An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angew. Chem. Int. Ed. 2006, 45, 8149-8152.
    54. Hurst, S. J.; Lytton-Jean, A. K. R.; Mirkin, C. A., Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes. Anal. Chem. 2006, 78, 8313-8318.
    55. Huang, Y.-F.; Shangguan, D.; Liu, H.; Phillips, J. A.; Zhang, X.; Chen, Y.; Tan, W., Molecular Assembly of an Aptamer–Drug Conjugate for Targeted Drug Delivery to Tumor Cells. ChemBioChem 2009, 10, 862-868.
    56. Huang, Y.-F.; Lin, Y.-W.; Lin, Z.-H.; Chang, H.-T., Aptamer-Modified Gold Nanoparticles for Targeting Breast Cancer Cells Through Light Scattering. J. Nanopart. Res. 2009, 11, 775-783.
    57. Shangguan, D.; Tang, Z.; Mallikaratchy, P.; Xiao, Z.; Tan, W., Optimization and Modifications of Aptamers Selected from Live Cancer Cell Lines. ChemBioChem 2007, 8, 603-606.
    58. Huo, F.; Lytton-Jean, A. K. R.; Mirkin, C. A., Asymmetric Functionalization of Nanoparticles Based on Thermally Addressable DNA Interconnects. Adv. Mater. 2006, 18, 2304-2306.
    59. Hamid, R.; Rotshteyn, Y.; Rabadi, L.; Parikh, R.; Bullock, P., Comparison of Alamar Blue and MTT Assays for High Through-Put Screening. Toxicol. In Vitro 2004, 18, 703-710.
    60. Hurst, S. J.; Han, M. S.; Lytton-Jean, A. K. R.; Mirkin, C. A., Screening the Sequence Selectivity of DNA-Binding Molecules Using a Gold Nanoparticle-Based Colorimetric Approach. Anal. Chem. 2007, 79, 7201-7205.
    61. Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourguignon, L.; Ducher, M.; Maire, P., The Hill Equation: A Review of its Capabilities in Pharmacological Modelling. Fundam. Clin. Pharmacol. 2008, 22, 633-648.
    62. Kim, J.; Hu, J.; Sollie, R. S.; Easley, C. J., Improvement of Sensitivity and Dynamic Range in Proximity Ligation Assays by Asymmetric Connector Hybridization. Anal. Chem. 2010, 82, 6976-6982.
    63. Weiss, J., The Hill Equation Revisited: Uses and Misuses. FASEB J. 1997, 11, 835-841.
    64. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A., Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312, 1027-1030.
    65. Gore, M. R.; Szalai, V. A.; Ropp, P. A.; Yang, I. V.; Silverman, J. S.; Thorp, H. H., Detection of Attomole Quantitites of DNA Targets on Gold Microelectrodes by Electrocatalytic Nucleobase Oxidation. Anal. Chem. 2003, 75, 6586-6592.
    66. Prado-Gotor, R.; Grueso, E., A Kinetic Study of the Interaction of DNA with Gold Nanoparticles: Mechanistic aspects of the Interaction. PCCP 2011, 13, 1479-1489.
    67. Schreiner, S. M.; Hatch, A. L.; Shudy, D. F.; Howard, D. R.; Howell, C.; Zhao, J.; Koelsch, P.; Zharnikov, M.; Petrovykh, D. Y.; Opdahl, A., Impact of DNA–Surface Interactions on the Stability of DNA Hybrids. Anal. Chem. 2011, 83, 4288-4295.
    68. Bangar, M. A.; Shirale , D. J.; Purohit, H. J.; Chen, W.; Myung, N. V.; Mulchandani, A., Single Conducting Polymer Nanowire Based Sequence-Specific, Base-Pair-Length Dependant Label-free DNA Sensor. Electroanalysis 2011, 23, 371-379.
    69. Hutter, E.; Pileni, M.-P., Detection of DNA Hybridization by Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy. J. Phys. Chem. B 2003, 107, 6497-6499.
    70. Hosta-Rigau, L.; Olmedo, I.; Arbiol, J.; Cruz, L. J.; Kogan, M. J.; Albericio, F., Multifunctionalized Gold Nanoparticles with Peptides Targeted to Gastrin-Releasing Peptide Receptor of a Tumor Cell Line. Bioconjugate Chem. 2010, 21, 1070-1078.
    71. Tan, Y. N.; Su, X.; Liu, E. T.; Thomsen, J. S., Cellular Response of Polyvalent Oligonucleotide-Gold Nanoparticle Conjugates. Anal. Chem. 2010, 82, 2759-2765.
    72. Das, J.; Huh, C.-H.; Kwon, K.; Park, S.; Jon, S.; Kim, K.; Yang, H., Comparison of the Nonspecific Binding of DNA-Conjugated Gold Nanoparticles between Polymeric and Monomeric Self-Assembled Monolayers. Langmuir 2008, 25, 235-241.
    73. Kleeberger, L.; Röttinger, E. M., Effect of pH and Moderate Hyperthermia on Doxorubicin, Epirubicin and Aclacinomycin A Cytotoxicity for Chinese Hamster Ovary Cells. Cancer Chemother. Pharmacol. 1993, 33, 144-148.
    74. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6, 662-668.
    75. Shah, N. B.; Dong, J.; Bischof, J. C., Cellular Uptake and Nanoscale Localization of Gold Nanoparticles in Cancer Using Label-Free Confocal Raman Microscopy. Mol. Pharm. 2010, 8, 176-184.
    76. Huang, Y.-F.; Chang, H.-T.; Tan, W., Cancer Cell Targeting Using Multiple Aptamers Conjugated on Nanorods. Anal. Chem. 2008, 80, 567-572.
    77. Ignatova, M. G.; Manolova, N. E.; Toshkova, R. A.; Rashkov, I. B.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T., Electrospun Nanofibrous Mats Containing Quaternized Chitosan and Polylactide with In Vitro Antitumor Activity against HeLa Cells. Biomacromolecules 2010, 11, 1633-1645.
    78. Hong, R.; Han, G.; Fernández, J. M.; Kim, B.-j.; Forbes, N. S.; Rotello, V. M., Glutathione-Mediated Delivery and Release Using Monolayer Protected Nanoparticle Carriers. J. Am. Chem. Soc. 2006, 128, 1078-1079.
    79. Wang, F.; Wang, Y.-C.; Dou, S.; Xiong, M.-H.; Sun, T.-M.; Wang, J., Doxorubicin-Tethered Responsive Gold Nanoparticles Facilitate Intracellular Drug Delivery for Overcoming Multidrug Resistance in Cancer Cells. ACS Nano 2011, 5, 3679-3692.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE