簡易檢索 / 詳目顯示

研究生: 喬彥豪
論文名稱: Rolling Shutter Video Correction and Stabilization
滾動快門影片的校正與穩定化
指導教授: 賴尚宏
口試委員: 賴尚宏
劉庭祿
莊永裕
朱宏國
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 55
中文關鍵詞: 滾動快門影像處理
外文關鍵詞: rolling shutter, motion estimation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著低功率、低耗能的CMOS感光元件越來越盛行,CMOS相機使用的滾動快門所造成的扭曲也越來越常見於日常生活。在這篇論文中,我們提出了一個校正滾動快門扭曲的方法。不同於過去的方法只考慮相機的平移或是轉動,我們的校正方法把這兩種情況都納入考慮,比其他的校正方法更精確,也更少限制。在估計相機運動軌跡的部分,我們使用了一個最佳化的方法來求出高解析的相機速度。此外,在相機只有平移的假設下,我們也容許拍攝的場景可以有很大的深度變化,因為我們提出來的校正方法也同時考慮深度資訊,並且同時計算相機速度及影像的深度圖,所以即使是不同深度的物體,我們也可以依據他的深度來做校正。除了校正扭曲之外,我們也根據估計出來的相機軌跡來做影片的穩定,讓最後的結果看起來更舒服。實驗的部分,我們利用模擬的影像來證明我們的方法不僅有效,也比以前的方法有更高的正確率,最後我們提供許多真實影片校正的例子來展現我們發展的這個滾動快門校正系統。


    Rolling shutter distortion becomes quite common with the increasing popularity of CMOS cameras in recent years. In this thesis, we present a novel correction method to remove the artifacts of videos captured by rolling shutter cameras. The proposed algorithm estimates the camera’s 3D rotation and 2D translation vectors simultaneously in an optimization framework. Unlike previous works which only focus on either translational or rotational motion, our rolling shutter correction model takes both kinds of motion into consideration to accurately reconstruct an undistorted video. In cases of pure camera translation, we allow the depth of field to be large, which breaks the limitations of previous works, and present a depth estimation method for a rolling shutter video. To alleviate the camera jittering problem, we also proposed a simple and efficient video stabilization method that can directly produce the stabilized video from the rolling shutter video. Experimental results on both synthetic and real videos are shown to demonstrate the effectiveness of our system and superiority over other methods.

    Contents 1. Introduction ………………………………………………….……………………..1 1.1 Rolling Shutter Distortion …………………………………………………...1 1.2 System Framework …………………………………………………………..4 2. Related Works ……………………………………………………………………...7 3. Correction Model ………………………………………………………………....13 4. Camera Translation and Rotation Estimation ……………………………………..18 4.1 Correspondence Construction ……………………………………………...19 4.2 Super-Resolution Motion Estimation of 5D Motion Parameters …………..20 4.2.1 Low-Resolution Linear Constraints ………………………………...20 4.2.2 Temporal Sampling of Camera Motion ……………………………..21 4.2.3 Optimization ………………………………………………………...22 4.2.4 Efficiency Improvement …………………………………………….25 5. Camera Translation and Depth Estimation ………………………………………..27 5.1 Correspondence Construction ……………………………………………...27 5.2 Two-Stage Motion and Depth Estimation ………………………………….28 5.2.1 Motion Estimation …………………………………………………..29 5.2.2 Depth Estimation ……………………………………………………30 6. Video Stabilization ………………………………………………………………..32 6.1 Smoothing Camera Paths …………………………………………………..33 6.2 Rendering Stabilized Frames ………………………………………………33 6.3 Combining Rolling Shutter Correction and Video Stabilization …………...35 7. Experimental Result ………………………………………………………………36 7.1 Validation of the Proposed Rolling Shutter Model ………………………...36 7.2 Synthetic Data ……………………………………………………………...40 7.2.1 Our Synthetic Data …………………………………………………40 7.2.2 [FR10] Synthetic Data ………………………………………………43 7.3 Video Stabilization …………………………………………………………46 7.4 User Study ………………………………………………………………….47 8. Conclusion ………………………………………………………………………...50 8.1 Summary …………………………………………………………………...50 8.2 Future Works ……………………………………………………………….51 References …………………………………………………………………………...52

    [AALM06] O. Ait-Aider, N. Andreff, J.-M. Lavest, and P. Martinet. Simultaneous object pose and velocity computation using a single view from a rolling shutter camera. In ECCV (2), pages 56–68, 2006.
    [AALM06] O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet. Exploiting rolling shutter distortions for simultaneous object pose and velocity computation using a single view. In Proc. IEEE International Conference on Computer Vision Systems, New York, USA, January 2006.
    [ABA07] O. Ait-Aider, A. Bartoli, and N. Andreff. Kinematics from lines in a single rolling shutter image. In CVPR, 2007.
    [AB09] O. Ait-Aider and F. Berry. Structure and kinematics triangulation with a rolling shutter stereo rig. In IEEE International Conference on Computer Vision, 2009.
    [BBKS10] S. Baker, E. P. Bennett, S. B. Kang, and R. Szeliski. Removing rolling shutter wobble. In IEEE CVPR, 2010.
    [BBM01] C. Buehler, M. Bosse, and L. McMillan. Non-metric image-based rendering
    for video stabilization. In IEEE CVPR, 2001.
    [CH07] W.-H. Cho and K.-S. Kong. Affine motion based CMOS distortion analysis and CMOS digital image stabilization. IEEE TCE, 53(3):833–841, August 2007
    [CKH07] W.-H. Cho, D.-W. Kim, and K.-S. Hong. CMOS digital image stabilization. IEEE TCE, 53(3):979–986, 2007
    [CJK08] J.-B. Chun, H. Jung, and C.-M. Kyung. Suppressing rolling shutter distortion of CMOS image sensors by motion vector detection. IEEE TCE, 54(4):1479–1487, 2008.
    [FR10] P.-E. Forssen and E. Ringaby. Rectifying rolling shutter video from hand-held devices. In IEEE CVPR, 2010
    [FR11] P.-E. Forssen and E. Ringaby. Efficient video rectification and stabilization of cell-phones. Int. 1. Comput. Vision, June 2011
    [GKE11] M. Grundmann, V. Kwatra, and I. Essa. Auto-directed video stabilization with robust II optimal camera paths. In IEEE CVPR, 2011.
    [GKCE12] M. Grundmann, V. Kwatra1, D. Castro, and I. Essa. Calibration-Free Rolling Shutter Removal. In Proceedings of IEEE Conference on Computational Photography, 2012.
    [HWB10] W. Hong, D. Wei, and A. U. Batur. Video stabilization and rolling shutter distortion reduction. In Proceedings of 2010 IEEE 17th International Conference on Image Processing.
    [HSB10] B. Heflin, W. Scheirer and T. E. Boult. Correcting rolling-shutter distortion of CMOS Sensors using facial feature detection. In Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), 2010
    [KJBL11] A. Karpenko, D. Jacobs, J. Baek, and M. Levoy. Digital Video Stabilization and Rolling Shutter Correction using Gyroscopes. Stanford CS Tech Report, 2011
    [LCC08] C.-K. Liang, L.-W. Chang, and H. Chen. Analysis and compensation of rolling shutter effect. IEEE Transactions on Image Processing, 17(8):1323–1330, August 2008.
    [LGW*11] F.Liu, M.Gleicher, J.Wang, H.Jin, and A.Agarwala. Subspace Video Stabilization, ACM Transactions on Graphics (TOG), Volume 30 Issue 1, January 2011
    [LGJA09] F. Liu, M. Gleicher, H. Jin, and A. Agarwala. Content-preserving warps for 3d video stabilization. In ACM SIGGRAPH, 2009.
    [Low04] Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.
    [Liu09] Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral Thesis. Massachusetts Institute of Technology. May 2009
    [MGS05] M. Meingast, C. Geyer, and S. Sastry. Geometric models of rolling-shutter cameras. In Proc. of the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Beijing, China, October 2005.
    [MOGT*06] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum. Full-frame video stabilization with motion inpainting. IEEE Trans. Pattern Anal. Mach. Intell., 28, July 2006.
    [PDSR00] T.Papadimitriou, K.Diamantaras, M.Strintzis, and M.Rou,eliotis. Robust Estimation of Rigid-Body 3-D Motion Parameters Based on Point, IEEE Transactions on Circuit and System for Video Technology, Vol.10, No.4, June 2000
    [TK91] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Carnegie Mellon University Technical Report CMU-CS-91-132, April 1991.
    [VLK11] D. T. V˜o, S. Lertrattanapanich and Y. T. Kim. Automatic video deshearing for skew sequences captured by rolling shutter cameras. In 2011 18th IEEE International Conference on Image Processing.
    [Zha00] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
    [Deshaker] Http://www.guthspot.se/video/deshaker.htm. © 2012 Gunnar Thalin.
    [Figure 3] Barry Green, Sensor Artifacts and CMOS Rolling Shutter, http://dvxuser.com/jason/CMOS-CCD/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE