簡易檢索 / 詳目顯示

研究生: 黃筱妤
Huang, Hsiao-Yu
論文名稱: 以共振非彈性散射研究關聯電子系統的磁性激發
Magnetic Excitations of Correlated Electrons Probed by Resonant Inelastic X-ray Scattering
指導教授: 黃迪靖
Huang, Di-Jing
口試委員: 藤森淳
高英哲
崔古鼎
林秀豪
學位類別: 博士
Doctor
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 97
中文關鍵詞: 共振非彈性散射高溫超導磁性激發四氧化三鐵
外文關鍵詞: resonant inelastic X-ray scattering, high temperature superconductivity, magnon excitation, Fe3O4
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們以共振非彈性X光散射(RIXS)來研究兩種代表性的樣品:高溫超體Bi1.5Pb0.6Sr1.54CaCu2O8+δ (Bi2212) 以及第一個被人類發現的磁性物質- 四氧化三鐵。由於自旋波動被認為是高溫超導機制的一個重要因素,因此探測高溫超導體的磁性激發成為此領域的重要課題。然而理論上對於此磁性激發的成因仍存有爭論。藉由不同入射光偏振,我們發現兩種截然不同磁性激發 - Raman形式和Fluorescence 形式。當入射光偏振方向在散射光平面時,其磁性激發為Raman形式,也就是其激發態能量不隨著入射光能量改變。結合RIXS和精確對角化計算,我們證明Raman形式的磁性激發本質上確實是集體磁性激發態(collective magnetic excitation)。

    從發現四氧化三鐵的Verwey 相變以來,其引起電導率異常降低與同時結構改變的機制引發了許多研究。在此我們使用RIXS探測四氧化三鐵中的局部電子結構。藉由其共振特性我們觀測到Fe3+的定域磁性激發以及由自旋與軌域交互作用形成的Fe2+ dd激子。藉由multiplet 理論計算我們得到 FeO6的tetragonal變形其強度為Δt2g=-80meV。RIXS的溫度變化結果顯示此變形在四氧化三鐵的高溫態就已存在。


    Resonant inelastic X-ray scattering (RIXS), a photon-in and photon-out spectroscopy method, has been used to probe two representative compounds, the optimally doped superconducting cuprate Bi1.5Pb0.6Sr1.54CaCu2O8+δ (Bi2212) and the first magnetic material found by mankind - magnetite Fe3O4. Investigation of collective magnetic excitations in cuprate superconductors is an important subject in searching the paring mechanism of high Tc superconductivity. In comparison with inelastic neutron scattering, RIXS reveals the existence of high-energy magnetic excitations in doped superconducting cuprates.
    However, the interpretation of such excitations remains in dispute. Here we show the dependence of Cu L3 RIXS on the energy and polarization of incident photons in optimally doped high-Tc cuprate superconductors Bi2212. Two distinct types of excitations, Raman-like and
    fluorescence-like, were observed by using π- and σ-polarized incident X-rays, respectively. Combined with calculations of exact diagonalization, we demonstrate
    the nature of collective damped magnetic excitations measured with -polarized RIXS.

    Fe3O4 has been studied for decades to understand the Verwey transition. The mech-
    anism of the simultaneous drop of electric conductivity and a complex structural phase
    transition has been one of the most extensively studied problems in condensed matter physics. We used RIXS to unravel the local electronic structures of diff erent Fe sites in Fe3O4. Local spin excitations are observed on the octahedral Fe3+ sites with an eff ective exchange field of 90 meV. Markedly we found a broad excitation feature with an energyof 200 meV for Fe2+. With the help of multiplet calculations, a tetragonal distortion of
    strength t2g = 􀀀24 meV on the t2g orbitals was deduced. Our temperature-dependent RIXS spectra indicate that such local distortion already exists above the Verwey transition temperature and even up to 475 K.

    1 Introduction 5 1.1 Strongly correlated electron systems . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Collective magnetic excitations . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Inelastic neutron scattering . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Resonant inelastic X-ray scattering . . . . . . . . . . . . . . . . . . 11 2 Resonant Inelastic X-ray Scattering and Experimental Techniques 13 2.1 Theory of RIXS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Kramers-Heisenberg formula . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Direct RIXS and indirect RIXS . . . . . . . . . . . . . . . . . . . . 20 2.2 General features of RIXS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Excitations probed by RIXS . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Magnetic resonant inelastic X-ray scattering . . . . . . . . . . . . . . . . . 26 2.3.1 2D Heisenberg model . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Angular and momentum dependence . . . . . . . . . . . . . . . . . 28 2.4 The AGM-AGS beamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.1 Active monochromator and spectrometer . . . . . . . . . . . . . . . 31 2.4.2 Principle of energy compensation . . . . . . . . . . . . . . . . . . . 33 2.4.3 Optical layout of the AGM-AGS beamline . . . . . . . . . . . . . . 34 3 Computational approaches 35 3.1 Multiplet calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.1 Introduction to CTM4XAS and CTM4RIXS . . . . . . . . . . . . . 39 3.2 Ab-initio quantum chemical calculations . . . . . . . . . . . . . . . . . . . 40 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 Calculation of RIXS spectrum of CuO . . . . . . . . . . . . . . . . 42 4 RIXS of Cuprate Superconductor Pb-Bi2Sr2CaCu2O8+ 48 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Crystal properties of Pb-Bi2Sr2CaCu2O8+ . . . . . . . . . . . . . . . . . . 51 4.3 Distinct Raman- and uorescence-like RIXS . . . . . . . . . . . . . . . . . 53 4.3.1 Cu L3-edge RIXS measurements . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Collective spin excitations and noninteracting electron-hole scenarios 55 4.3.3 ED Calculations of RIXS spectra . . . . . . . . . . . . . . . . . . . 58 4.4 Dispersion of magnetic excitations . . . . . . . . . . . . . . . . . . . . . . . 60 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 Spin-orbital Excitations in Magnetite 66 5.1 Introduction to magnetite . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 Fe L3-edge RIXS measurements . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3 Origin of the low-energy excitations . . . . . . . . . . . . . . . . . . . . . . 73 5.4 Multiplet calculations of Fe ions . . . . . . . . . . . . . . . . . . . . . . . . 74 5.4.1 Multiplet calculations of octahedral Fe3+ . . . . . . . . . . . . . . . 76 5.4.2 Multiplet calculations of Fe2+ with tetragonal distortion . . . . . . 76 5.5 Temperature dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6 Conclusions and Future Work 84

    [1] A. Bosak, D. Chernyshov, M. Hoesch, P. Piekarz, M. L. Tacon, M. Krisch, A. Kozlowski,
    A. M. Oles, and K. Parlinski, Phys. Rev. X 4, 011040 (2014).
    [2] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
    [3] A. J. Millis, Nature 392, 147 (1998).
    [4] S.-W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).
    [5] P. Coleman, Handbook of Magnetism and Advanced Magnetic Materials, Vol. 1 (John
    Wiley and Sons, 2007) Chap. Heavy Fermions: Electrons at the Edge of Magnetism,
    pp. 95{148.
    [6] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).
    [7] S. Li and P. Dai, Frontiers of Physics 6, 429 (2011).
    [8] E. Balcar and S. W. Lovesey, Theory of magnetic neutron and photon scattering
    (Oxford Science Publications, 1989).
    [9] G. Shirane, S. M. Shapiro, and J. M. Tranquada, Neutron Scattering with a Triple-
    Axis Spectrometer (Cambridge University Press,, 2002).
    [10] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. V. D. Brink,
    Rev. Mod. Phys. 83, 705 (2011).
    [11] L. Ament, G. Ghiringhelli, M. Sala, L. Braicovich, and J. van den Brink, Phys.
    Rev. Lett. 103, 117003 (2009).
    [12] F. Forte, L. J. P. Ament, and J. van den Brink, Phys. Rev. B 77, 134428 (2008).
    [13] T. Nomura and J. i. Igarashi, Phys. Rev. B 71, 035110 (2005).
    [14] L. Braicovich, M. Minola, G. Dellea, M. Le Tacon, M. Moretti Sala, C. Morawe, J.-
    C. Pe en, R. Supruangnet, F. Yakhou, G. Ghiringhelli, and N. B. Brookes, Review
    of Scienti c Instruments 85, 115104 (2014).
    [15] F. de Groot, P. Kuiper, and G. Sawatzky, Phys. Rev. B 57, 14584 (1998).
    [16] M. Dean, J. Mag. Mag. Mat. 376, 3 (2015).
    [17] D. Benjamin, I. Klich, and E. Demler, Phys. Rev. Lett. 112, 247002 (2014).
    [18] G. Ghiringhelli, A. Piazzalunga, C. Dallera, T. Schmitt, V. Strocov, J. Schlappa,
    L. Patthey, X. Wang, H. Berger, and M. Grioni, Phys. Rev. Lett. 102, 027401
    (2009).
    [19] L. A.Wray, S.-W. Huang, I. Jarrige, K. Ikeuchi, K. Ishii, J. Li, Z. Q. Qiu, Z. Hussain,
    and Y.-D. Chuang, Front. Phys. 3, 32 (2015).
    [20] L. A. Wray, J. Li, Z. Q. Qiu, J. Wen, Z. Xu, G. Gu, S. W. Huang, E. Arenholz,
    W. Yang, Z. Hussain, and Y. D. Chuang, Phys. Rev. B 88, 035105 (2013).
    [21] M. Moretti Sala, V. Bisogni, C. Aruta, G. Balestrino, H. Berger, N. B. Brookes,
    G. M. D. Luca, D. Di Castro, M. Grioni, M. Guarise, P. G. Medaglia, F. Miletto
    Granozio, M. Minola, P. Perna, M. Radovic, M. Salluzzo, T. Schmitt, K. J. Zhou,
    L. Braicovich, and G. Ghiringhelli, New J. Phys. 13, 043026 (2011).
    [22] G. Ghiringhelli, A. Piazzalunga, X. Wang, a. Bendounan, H. Berger, F. Bottegoni,
    N. Christensen, C. Dallera, M. Grioni, J. C. Grivel, M. Moretti Sala, L. Patthey,
    J. Schlappa, T. Schmitt, V. Strocov, and L. Braicovich, Eur. Phys. J. Spec. Top.
    169, 199 (2009).
    [23] G. Ghiringhelli, M. Matsubara, C. Dallera, F. F. Tagliaferri, N. B. Brookes,
    A. Kotani, and L. Braicovich, Phys. Rev. B 73, 035111 (2006).
    [24] G. Ghiringhelli, M. Matsubara, C. Dallera, F. Fracassi, R. Gusmeroli, A. Piazzalunga,
    A. Tagliaferri, N. B. Brookes, A. Kotani, and L. Braicovich, J. Phys.
    Condens. Matter 17, 5397 (2005).
    [25] E. Saitoh, S. Okamoto, K. T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara,
    S. Maekawa, and Y. Tokura, Nature 410, 180 (2001).
    [26] C. Ulrich, G. Ghiringhelli, A. Piazzalunga, L. Braicovich, N. Brookes, H. Roth,
    T. Lorenz, and B. Keimer, Phys. Rev. B 77, 4 (2008).
    [27] C. Ulrich, L. J. P. Ament, G. Ghiringhelli, L. Braicovich, M. Moretti Sala, N. Pezzotta,
    T. Schmitt, G. Khaliullin, J. Van Den Brink, H. Roth, T. Lorenz, and
    B. Keimer, Phys. Rev. Lett. 103, 4 (2009).
    [28] T. Semba, M. Takahashi, and J. Igarashi, Phys. Rev. B 78, 155111 (2008).
    [29] T. Inami, T. Fukuda, J. Mizuki, S. Ishihara, H. Kondo, H. Nakao, T. Matsumura,
    K. Hirota, Y. Murakami, S. Maekawa, and Y. Endoh, Phys. Rev. B 67, 045108
    (2003).
    [30] J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W. Haverkort, V. N. Strocov,
    L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J.-S. Caux,
    L. Patthey, H. M. R nnow, J. van den Brink, and T. Schmitt, Nature 485, 82
    (2012).
    [31] V. Bisogni, K. Wohlfeld, S. Nishimoto, C. Monney, J. Trinckauf, K. Zhou, R. Kraus,
    K. Koepernik, C. Sekar, V. Strocov, B. Buchner, T. Schmitt, J. van den Brink, and
    J. Geck, Phys. Rev. Lett. 114, 096402 (2015).
    [32] K. Wohlfeld, S. Nishimoto, M. W. Haverkort, and J. van den Brink, Phys. Rev. B
    88, 195138 (2013).
    [33] J. H. de Boer and E. J. W. Verwey, Proc. Phys. Soc. 49, 59 (1937).
    [34] F. Vernay, B. Moritz, I. S. El mov, J. Geck, D. Hawthorn, T. P. Devereaux, and
    G. A. Sawatzky, Phys. Rev. B 77, 104519 (2008).
    [35] A. Higashiya, S. Imada, T. Murakawa, H. Fujiwara, S. Kasai, A. Sekiyama, S. Suga,
    K. Okada, M. Yabashi, K. Tamasaku, T. Ishikawa, and H. Eisaki, New J. Phys.
    10, 053033 (2008).
    [36] L. Wray, D. Qian, D. Hsieh, Y. Xia, H. Eisaki, and M. Z. Hasan, Phys. Rev. B 76,
    100507(R) (2007).
    [37] C. C. Chen, B. Moritz, F. Vernay, J. N. Hancock, S. Johnston, C. J. Jia, G. Chabot-
    Couture, M. Greven, I. El mov, G. A. Sawatzky, and T. P. Devereaux, Phys. Rev.
    Lett. 105, 177401 (2010).
    [38] D. S. Ellis, J. P. Hill, S. Wakimoto, R. J. Birgeneau, D. Casa, T. Gog, and Y.-J.
    Kim, Phys. Rev. B 77, 060501(R) (2008).
    [39] L. Lu, G. Chabot-Couture, X. Zhao, J. N. Hancock, N. Kaneko, O. P. Vajk, G. Yu,
    S. Grenier, Y. J. Kim, D. Casa, T. Gog, and M. Greven, Phys. Rev. Lett. 95,
    217003 (2005).
    [40] M. W. Haverkort, Phys. Rev. Lett. 105, 167404 (2010).
    [41] M. van Veenendaal, Theory of Inelastic Scattering and Absorption of X-rays (Cambridge
    University Press, 2015).
    [42] A. Kotani and S. Shin, Rev. Mod. Phys. 73, 203 (2001).
    [43] C. H. Lai, H. S. Fung, W. B. Wu, H. Y. Huang, H. W. Fu, S. W. Lin,
    S. W..and Huang, C. C. Chiu, D. J. Wang, L. J. Huang, T. C. Tseng, S. C. Chung,
    C. T. Chen, and D. J. Huang, J. Synchrotron Radiat. 21, 325 (2014).
    [44] H. S. Fung, C. T. Chen, L. J. Huang, C. H. Chang, S. C. Chung, D. J. Wang, T. C.
    Tseng, and K. L. Tsang, AIP Conf. Proc. 705, 655 (2004).
    [45] E. Stavitski and F. M. F. de Groot, Micron 41, 687 (2010).
    [46] R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California
    Press, 1981).
    [47] Missing is a user-friendly version of program to calculate XAS and RIXS spectra,
    which is currently maintained by Claudia Dallera and Riccardo Gusmeroli.
    http://www.esrf.eu/computing/scienti c/MISSING/.
    [48] F. de Groot and A. Kotani, Core Level Spectroscopy of Solids (Taylor & Francis
    Group, 2008).
    [49] L. Hozoi, L. Siurakshina, P. Fulde, and J. van den Brink, Sci. Rep. 1, 65 (2011).
    [50] H. Y. Huang, N. A. Bogdanov, L. Siurakshina, P. Fulde, J. Van Den Brink, and
    L. Hozoi, Phys. Rev. B 84, 235125 (2011).
    [51] CRYSTAL 2000, University of Torino, Italy.
    [52] A detail discussion of this procedure are discussed in Computational Methods for
    Large Systems: Electronic Structure Approaches for Biotechnology and Nanotech-
    nology, edited by J. R. Reimers (Wiley, Hoboken, 2011), Chap. 6.
    [53] CRYSTAL-MOLPRO interface, Max-Planck-Institut fur Physik komplexer Systeme,
    Dresden, Germany.
    [54] For a monograph, see T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-
    Structure Theory (Wiley, Chichester, 2000).
    [55] J. Bednorz and K. Muller, Z. Phys. B64, 189 (1986).
    [56] J. Bardeen, L. Cooper, and J. R. Schrie er, Phys.Rev. 108, 1175 (1957).
    [57] D. J. Scalapino, Phys. Rep. 250, 329 (1995).
    [58] C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).
    [59] D. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).
    [60] D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).
    [61] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518,
    179 (2015).
    [62] R. J. Birgeneau, C. Stock, J. M. Tranquada, and K. Yamada, J. Phys. Soc. Japan
    75, 111003 (2006).
    [63] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S. W.
    Cheong, and Z. Fisk, Phys. Rev. Lett. 86, 5377 (2001).
    [64] C. Stock, W. J. L. Buyers, R. a. Cowley, P. S. Clegg, R. Coldea, C. D. Frost,
    R. Liang, D. Peets, D. Bonn, W. N. Hardy, and R. J. Birgeneau, Phys. Rev. B 71,
    024522 (2005).
    [65] J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita,
    and K. Yamada, Nature 429, 534 (2004).
    [66] S. M. Hayden, H. A. Mook, P. Dai, T. G. Perring, and F. Dogan, Nature 429, 531
    (2004).
    [67] M. Arai, T. Nishijima, Y. Endoh, T. Egami, S. Tajima, K. Tomimoto, Y. Shiohara,
    M. Takahashi, A. Garrett, and S. Bennington, Phys. Rev. Lett. 83, 608 (1999).
    [68] B. Vignolle, S. M. Hayden, D. F. McMorrow, H. M. Rnnow, B. Lake, C. D. Frost,
    and T. G. Perring, Nat. Phys. 3, 163 (2007).
    [69] G. Xu, G. D. Gu, M. Hucker, B. Fauque, T. G. Perring, L. P. Regnault, and J. M.
    Tranquada, Nat. Phys. 5, 642 (2009).
    [70] P. Bourges, Y. Sidis, H. F. Fong, L. P. Regnault, J. Bossy, A. Ivanov, and B. Keimer,
    288, 1234 (2000).
    [71] O. J. Lipscombe, S. M. Hayden, B. Vignolle, D. F. McMorrow, and T. G. Perring,
    Phys. Rev. Lett. 99, 067002 (2007).
    [72] S. D. Wilson, S. Li, H. Woo, P. Dai, H. A. Mook, C. D. Frost, S. Komiya, and
    Y. Ando, Phys. Rev. Lett. 96, 157001 (2006).
    [73] N. P. Armitage, P. Fournier, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010).
    [74] J. Schlappa, T. Schmitt, F. Vernay, V. Strocov, V. Ilakovac, B. Thielemann,
    H. Rnnow, S. Vanishri, a. Piazzalunga, X. Wang, L. Braicovich, G. Ghiringhelli,
    C. Marin, J. Mesot, B. Delley, and L. Patthey, Phys. Rev. Lett. 103, 047401 (2009).
    [75] L. Braicovich, L. Ament, V. Bisogni, F. Forte, C. Aruta, G. Balestrino, N. Brookes,
    G. De Luca, P. Medaglia, F. Granozio, M. Radovic, M. Salluzzo, J. van den Brink,
    and G. Ghiringhelli, Phys. Rev. Lett. 102, 167401 (2009).
    [76] L. Braicovich, M. Moretti Sala, L. J. P. Ament, V. Bisogni, M. Minola, G. Balestrino,
    D. Di Castro, G. M. De Luca, M. Salluzzo, G. Ghiringhelli, and J. van den Brink,
    Phys. Rev. B 81, 174533 (2010).
    [77] M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L. Braicovich,
    H. Berger, J. N. Hancock, D. van der Marel, T. Schmitt, V. N. Strocov, L. J. P.
    Ament, J. van den Brink, P. H. Lin, P. Xu, H. M. R nnow, and M. Grioni, Phys.
    Rev. Lett. 105, 157006 (2010).
    [78] L. Braicovich, J. van den Brink, V. Bisogni, M. M. Sala, L. J. P. Ament, N. B.
    Brookes, G. M. De Luca, M. Salluzzo, T. Schmitt, V. N. Strocov, and G. Ghiringhelli,
    Phys. Rev. Lett. 104, 077002 (2010).
    [79] M. Le Tacon, G. Ghiringhelli, J. Chaloupka, M. M. Sala, V. Hinkov, M. W.
    Haverkort, M. Minola, M. Bakr, K. J. Zhou, S. Blanco-Canosa, C. Monney, Y. T.
    Song, G. L. Sun, C. T. Lin, G. M. De Luca, M. Salluzzo, G. Khaliullin, T. Schmitt,
    L. Braicovich, and B. Keimer, Nat. Phys. 7, 725 (2011).
    [80] M. Dean, A. James, R. Springell, X. Liu, C. Monney, K. Zhou, R. Konik, J. Wen,
    Z. Xu, G. Gu, V. Strocov, T. Schmitt, and J. Hill, Phys. Rev. Lett. 110, 147001
    (2013).
    [81] M. P. M. Dean, G. Dellea, R. S. Springell, F. Yakhou-Harris, K. Kummer, N. B.
    Brookes, X. Liu, Y.-J. Sun, J. Strle, T. Schmitt, L. Braicovich, G. Ghiringhelli,
    I. Bozovic, and J. P. Hill, Nat. Mater. 12, 1019 (2013).
    [82] M. Le Tacon, M. Minola, D. C. Peets, M. Moretti Sala, S. Blanco-Canosa, V. Hinkov,
    R. Liang, D. A. Bonn, W. N. Hardy, C. T. Lin, T. Schmitt, L. Braicovich, G. Ghiringhelli,
    and B. Keimer, Phys. Rev. B 88, 020501 (2013).
    [83] K. Ishii, M. Fujita, T. Sasaki, M. Minola, G. Dellea, C. Mazzoli, K. Kummer,
    G. Ghiringhelli, L. Braicovich, T. Tohyama, K. Tsutsumi, K. Sato, R. Kajimoto,
    K. Ikeuchi, K. Yamada, M. Yoshida, M. Kurooka, and J. Mizuki, Nat. Commun.
    5, 3714 (2014).
    [84] W. S. Lee, J. J. Lee, E. a. Nowadnick, W. Tabis, S. W. Huang, V. N. Strocov,
    E. M. Motoyama, G. Yu, B. Moritz, M. Greven, T. Schmitt, Z. X. Shen, and T. P.
    Devereaux, Nat. Phys. 10, 883 (2014).
    [85] S. Wakimoto, K. Yamada, J. M. Tranquada, C. D. Frost, R. J. Birgeneau, and
    H. Zhang, Phys. Rev. Lett. 98, 247003 (2007).
    [86] C. J. Jia, E. A. Nowadnick, K. Wohlfeld, Y. F. Kung, C.-C. Chen, S. Johnston,
    T. Tohyama, B. Moritz, and T. P. Devereaux, Nat. Commun. 5, 3314 (2014).
    [87] M. Guarise, B. D. Piazza, H. Berger, E. Giannini, T. Schmitt, H. M. Rnnow, G. A.
    Sawatzky, J. van den Brink, D. Altenfeld, I. Eremin, and M. Grioni, Nat. Commun.
    5, 5760 (2014).
    [88] M. Minola, G. Dellea, H. Gretarsson, Y. Y. Peng, Y. Lu, J. Porras, T. Loew,
    F. Yakhou, N. B. Brookes, Y. B. Huang, J. Pelliciari, T. Schmitt, G. Ghiringhelli,
    B. Keimer, L. Braicovich, and M. L. Tacon, Phys. Rev. Lett. 114, 217003 (2015).
    [89] H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys. 27, 209
    (1988).
    [90] T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Science 239, 1015
    (1988).
    [91] Y. Gao, P. Lee, P. Coppens, M. A. Subramanian, and A. W. Sleight, Scienc 241,
    954 (1988).
    [92] S. Kambe, K. Okuyama, S. Ohshima, and T. Shimada, Physica C 250, 50 (1995).
    [93] N. Jakubowicz, D. Grebille, M. Hervieu, and H. Leligny, Phys. Rev. B 63, 214511
    (2001).
    [94] R.-H. He, M. Hashimoto, H. Karapetyan, J. D. Koralek, J. P. Hinton, J. P. Testaud,
    V. Nathan, Y. Yoshida, H. Yao, K. Tanaka, W. Meevasana, R. G. Moore, D. H.
    Lu, S.-K. Mo, M. Ishikado, H. Eisaki, Z. Hussain, T. P. Devereaux, S. A. Kivelson,
    J. Orenstein, A. Kapitulnik, and Z.-X. Shen, Science 331, 1579 (2011).
    [95] M. Hashimoto, R.-H. He, K. Tanaka, J.-P. Testaud, W. Meevasana, R. G. Moore,
    H. Y. D. Lu, Y. Yoshida, H. Eisaki, T. P. Devereaux, Z. Hussain, and Z.-X. Shen,
    Nat. Phys. 6, 414 (2010).
    [96] Z. H. A. Damascelli and Z.-X. Shen, Rev. Mod. Phys. 473, 75 (2003).
    [97] H.-B. Yang, J. D. Rameau, P. D. Johnson, T. Valla1, A. Tsvelik, and G. D. Gu,
    Nature 456, 77 (2008).
    [98] H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, A. Ivanov, G. D. Gu, N. Koshizuka,
    and B. Keimer, Nature 398, 588 (1999).
    [99] H. Suzuki, T. Yoshida, S. Ideta, G. Shibata, K. Ishigami, T. Kadono, A. Fujimori,
    M. Hashimoto, D. H. Lu, Z.-X. Shen, K. Ono, E. Sakai, M. M. H. Kumigashira,
    and T. Sasagawa, Phys. Rev. B 88, 100501 (2013).
    [100] M. S. Senn, J. P. Wright, and J. P. Att eld, 481, 173 (2012).
    [101] E. J. W. Verwey, Nature 144, 327 (1939).
    [102] F. Walz, Journal of Physics: Condensed Matter 14, R285 (2002).
    [103] J. Garca and G. Subas, Journal of Physics: Condensed Matter 16, R145 (2004).
    [104] M. Iizumi, T. F. Koetzle, G. Shirane, S. Chikazumi, M. Matsui, and S. Todo, Acta
    Crystallographica Section B 38, 2121 (1982).
    [105] J. P. Wright, J. P. Att eld, and P. G. Radaelli, Phys. Rev. Lett. 87, 266401 (2001).
    [106] J. P. Wright, P. J. Att eld, and P. G. Radaelli, Phys. Rev. B 66, 214422 (2002).
    [107] G. Subas, J. Garca, J. Blasco, M. G. Proietti, H. Renevier, and M. C. Sanchez,
    Phys. Rev. Lett. 93, 156408 (2004).
    [108] D. J. Huang, H.-J. Lin, J. Okamoto, K. S. Chao, H.-T. Jeng, G. Y. Guo, C.-H. Hsu,
    C.-M. Huang, D. C. Ling, W. Wu, C. S. Yang, and C. T. Chen, Phys. Rev. Lett.
    96, 096401 (2006).
    [109] E. Nazarenko, J. E. Lorenzo, Y. Joly, J. L. Hodeau, D. Mannix, and C. Marin,
    Phys. Rev. Lett. 97, 056403 (2006).
    [110] Y. Joly, J. E. Lorenzo, E. Nazarenko, D. Mannix, and C. Marin, Phys. Rev. B 78,
    134110 (2008).
    [111] J. E. Lorenzo, C. Mazzoli, N. Jaouen, C. Detlefs, D. Mannix, S. Grenier, Y. Joly,
    and C. Marin, Phys. Rev. Lett. 101, 226401 (2008).
    [112] J. Schlappa, C. Schuler-Langeheine, C. F. Chang, H. Ott, A. Tanaka, Z. Hu, M. W.
    Haverkort, E. Schierle, E. Weschke, G. Kaindl, and L. H. Tjeng, Phys. Rev. Lett.
    100, 026406 (2008).
    [113] S. R. Bland, B. Detlefs, S. B. Wilkins, T. A. W. Beale, C. Mazzoli, Y. Joly, P. D.
    Hatton, J. E. Lorenzo, and V. A. M. Brabers, J. Phys. Condens. Matter 21, 485601
    (2009).
    [114] J. Garca, G. Subas, J. Herrero-Martn, J. Blasco, V. Cuartero, M. C. Sanchez,
    C. Mazzoli, and F. Yakhou, Phys. Rev. Lett. 102, 176405 (2009).
    [115] S. B. Wilkins, S. Di Matteo, T. a. W. Beale, Y. Joly, C. Mazzoli, P. D. Hatton,
    P. Bencok, F. Yakhou, and V. a. M. Brabers, Phys. Rev. B 79, 2 (2009).
    [116] C. F. Chang, J. Schlappa, M. Buchholz, a. Tanaka, E. Schierle, D. Schmitz, H. Ott,
    R. Sutarto, T. Willers, P. Metcalf, L. H. Tjeng, and C. Schu ler Langeheine, Phys.
    Rev. B 83, 073105 (2011).
    [117] G. Subas, J. Garca, J. Blasco, J. Herrero-Martn, M. C. Sanchez, J. Orna, and
    L. Morellon, J. Synchrotron Radiat. 19, 159 (2012).
    [118] S.-C. Weng, Y.-R. Lee, C.-G. Chen, C.-H. Chu, Y.-L. Soo, and S.-L. Chang, Phys.
    Rev. Lett. 108, 146404 (2012).
    [119] H.-T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. B 74, 195115 (2006).
    [120] H.-T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. Lett. 93, 156403 (2004).
    [121] I. Leonov, A. N. Yaresko, V. N. Antonov, M. A. Korotin, and V. I. Anisimov, Phys.
    Rev. Lett. 93, 146404 (2004).
    [122] A. Tanaka, C. F. Chang, M. Buchholz, C. Trabant, E. Schierle, J. Schlappa,
    D. Schmitz, H. Ott, P. Metcalf, L. H. Tjeng, and C. Schuler-Langeheine, Phys.
    Rev. Lett. 108, 227203 (2012).
    [123] A. Tanaka, C. F. Chang, M. Buchholz, C. Trabant, E. Schierle, P. M. L. H. T.
    J. Schlappa D. Schmitz, H. Ott, and C. Schuler-Langeheine, Phys. Rev. B 88,
    195110 (2013).
    [124] M. S. Senn, J. P. Wright, J. Cumby, and J. P. Att eld, Phys. Rev. B 92, 024104
    (2015).
    [125] D. J. Huang, C. F. Chang, H.-T. Jeng, G. Y. Guo, H.-J. Lin, W. B. Wu, H. C. Ku,
    A. Fujimori, Y. Takahashi, and C. T. Chen, Phys. Rev. Lett. 93, 077204 (2004).
    [126] M. L. G. S. E. Goering, S. Gold, Europhys. Lett. 73, 97 (2006).
    [127] S. G. E. Goering, M. Lafkioti, Phys. Rev. Lett. 96, 039701 (2006).
    [128] A. Mirone, M. Sacchi, and S. Gota, Phys. Rev. B 61, 13540 (2000).
    [129] J. Chen, D. J. Huang, A. Tanaka, C. Chang, S. Chung, W. Wu, and C. Chen, Phys.
    Rev. B 69, 085107 (2004).
    [130] E. Arenholz, G. van der Laan, R. V. Chopdekar, and Y. Suzuki, Phys. Rev. B 74,
    094407 (2006).
    [131] G. G. H. B. L. V. Gasparov, A. Rush, Phys. Rev. B 79, 144303 (2009).
    [132] M. Hoesch, P. Piekarz, A. Bosak, M. Le Tacon, M. Krisch, A. Kozlowski, A. M.
    Oles, and K. Parlinski, Phys. Rev. Lett. 110, 207204 (2013).
    [133] T. Fujii, F. M. F. de Groot, G. A. Sawatzky, F. C. Voogt, T. Hibma, and K. Okada,
    Phys. Rev. B 59, 3195 (1999).
    [134] R. J. McQueeney, M. Yethiraj, S. Chang, W. Montfrooij, T. G. Perring, J. Honig,
    and P. Metcalf, Phys. Rev. Lett. 99, 246401 (2007).
    [135] R. J. McQueeney, M. Yethiraj, W. Montfrooij, J. S. Gardner, P. Metcalf, and J. M.
    Honig, Phys. Rev. B 73, 174409 (2006).
    [136] T. Haupricht, R. Sutarto, M. W. Haverkort, H. Ott, A. Tanaka, H. H. Hsieh, H. J.
    Lin, C. T. Chen, Z. Hu, and L. H. Tjeng, Phys. Rev. B , 035120 (2010).
    [137] Y. Fujii, G. Shirane, and Y. Yamada, Phys. Rev. B 11, 2036 (1975).
    [138] Y. Yamada, N. Wakabayashi, and R. M. Nicklow, Phys. Rev. B 21, 4642 (1980).
    [139] G. Subas, J. Garca, and J. Blasco, Phys. Rev. B 71, 155103 (2005).
    [140] S. K. Park, T. Ishikawa, and Y. Tokura, Phys. Rev. B 58, 3717 (1998).
    [141] J.-H. Park, L. H. Tjeng, J. W. Allen, P. Metcalf, and C. T. Chen, Phys. Rev. B
    55, 12813 (1997).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE