簡易檢索 / 詳目顯示

研究生: 李耀華
論文名稱: 高度位向選擇性含硫酚基及2-硫基吡啶之聚噻吩的合成及其在有機染料敏化太陽能電池上的應用
指導教授: 韓建中
口試委員: 鄭建鴻
蔡易州
白孟宜
李志聰
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 228
中文關鍵詞: 聚噻吩
外文關鍵詞: polythiophene
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化太陽能電池是目前最受矚目的有機太陽能電池元件,通常是以含有金屬原子的有機化合物做為染料。然而中心金屬價格較高且具高污染性,於是純有機的染料敏化太陽能電池成為了另一種低汙染且低成本的選項。本實驗室在先前的研究中發現使用含有正丁硫烷取代基之聚噻吩做為染料的染料敏化太陽能電池,其光電轉換效率最高可達1.41 %。相較於含有正己基取代基之聚噻吩,其應用在有機染料敏化太陽能電池上時因為在TiO2上的吸附效果很差,造成效率不高。
    本論文接續先前本實驗室何明記碩士的研究,進一步將噻吩的3號位取代為硫酚基(phenylthio)與2-硫基吡啶(2-pyridinylthio),因為透過理論計算發現將聚噻吩接上具有拉電子性的側鏈取代基時,當其被激發至激發態時,主鏈上的電子會轉移至側鏈上。而聚噻吩主鏈本身具有良好的電洞傳輸性質,此兩種電子特性結合之下,十分適合應用在太陽能電池上做為吸光材料。將接上取代基的噻吩單體以GRIM法和McCullough分別聚合成具高度位向選擇性的聚噻吩,但以GRIM法聚合時的單體分別以2,5號位雙邊溴化以及2號位為溴、五號位為碘的單體進行聚合,並比較兩種單體的聚合結果。經由製程上的調整,聚合的產率最高可達約60 %,分子量則介於1000~2500之間。接著將所得的聚噻吩製備成有機染料敏化太陽能電池進行效率的量測,其中poly[(3-phenylthio)thiophene]最高效率可達1.19 %,而poly[3-(2-pyridinylthio)thiophene]的最高效率為0.25 %。


    In the last decade, dye-sensitized solar cells (DSSCs), based on organic compounds containing metal atoms as a dye material, have become more popular due to their low-cost production and high efficiency. However, the cost and environmental pollution associated with the metal-containing DSSCs are found to be very high, which demand researchers to look for an alternative source of dye, such as pure organic DSSC dyes.
    Among various dye materials, polythiophene derivatives are of great interest due to their unique combination of original electronic properties, environment stability, and structure versatility. Recently, our lab have made a DSSC containing polythiophene with butylthio substuient as a dye material. The photoelectric conversion efficiency of the DSSC was found to be up to 1.41%, which is much higher than the photo-electric efficiency of the device made up of poly(3-hexylthiophene) as the dye. The very low efficiency of poly(3-hexylthiophene) containing device could be due to the poor adsorption nature of the dye on TiO2 material.
    In this work, the synthetic methods for two new polymers, i.e., poly[3-(phenylthio)thiophene] and poly[3-(2-pyridinylthio)thiophene] were developed following the previous work done in our laboratory by Mr. Ming Kee Ho.
    We found through theoretical calculations that polythiophenes with electron withdrawing substituents at 3-position may provide an efficient way to transfer electrons from the main chain to their side chains during their photo-oxidation. While the polythiophene main chain itself holds a very good hole transporting properties and electrical conductivity. Thus, the combination of the polythiophene main chain and the electron withdrawing side chain substituent should render the dye with high DSSC efficiency. The in-house prepared monomers of 2,5-dibromo and 2-bromo derivatives of 3-(phenylthio)thiophene and 3-(2-pyridinylthio)thiophene were polymerized by GRIM and McCullough method, respectively, to give rise to regioregular polythiophenes. Both 2,5-dibromo-3-(arylthio)thiophene and 2-bromo-5-iodo-3-(aryl- thio)thiophene monomers were synthesized and polymerized by GRIM method, and their polymerizations results, based on the reactivity difference, were compared. The optimal yield was found to be 60% through the adjustment of process, and the molecular weight of the polymers were found to be between 1000 to 2500 by gel permeation chromatography (GPC) using polystyrene standards in THF eluant. DSSC devices have been prepared by using these polythiophene polymers as dye and efficiency measurements were performed for their corresponding devices. The devices have shown a maximum efficiency of up to 1.19% and 0.25% respectively, for poly[3-(phenylthio)thiophene] and poly[3-(2-pyridinylthio)thiophene].

    化合物之結構、代號英文名稱 24 第一章 緒論與文獻回顧 27 1-1 前言 28 1-2 導電高分子之簡介 29 1-2-1 高分子聚合物的歷史發展 29 1-2-2 常見的導電高分子 30 1-2-3 導電高分子可以導電的原理 31 1-2-4 導電高分子時代的開端 34 1-2-5 導電高分子的應用與未來發展 37 1-3 導電高分子聚噻吩之簡介 39 1-3-1 聚噻吩的合成方法 39 1-3-2 聚噻吩的選擇性和其光電性質的關係 42 1-3-3 不同選擇性的聚噻吩的 NMR 光譜差異 45 1-4 太陽能電池之簡介 48 1-4-1 太陽能電池的原理 48 1-4-2 染料敏化劑的種類 50 1-4-3 聚噻吩在太陽能電池上的應用 53 1-5 研究動機 55 1-6 參考文獻 60 第二章 實驗內容(一) - 單體的合成與實驗儀器 62 2-1實驗儀器 63 2-2實驗藥品及溶劑 63 2-3 單體的合成 65 2-3-1 單體的合成步驟簡介 65 2-3-2 3-(butylthio)thiophene合成步驟 (3BTT) 65 2-3-3 2,5-dibromo-3-(butylthio)thiophene合成步驟 (3BTT-Br2) 66 2-3-4 3-(phenylthio)thiophene合成步驟(3PTT) 67 2-3-5 2-bromo-3-(phenylthio)thiophene合成步驟(3PTT-Br) 68 2-3-6 2,5-dibromo-3-(phenylthio)thiophene合成步驟(3PTT-Br2) 69 2-3-8 3-(2-pyridinylthio)thiophene合成步驟(3PYTT) 69 2-3-9 2-bromo-3-(2-pyridinylthio)thiophene合成步驟(3PYTT-Br) 70 2-3-10 2,5-dibromo-3-(2-pyridinylthio)thiophene合成步驟(3PYTT-Br2) 71 2-4 製備單邊碘化的單體 72 2-4-1 前言 72 2-4-2 3PTT與3PYTT的單邊碘化 74 2-4-3 2-bromo-5-iodo-3-thiophenylthiophene合成步驟(3PTT-Br-I) 80 2-4-4 2-bromo-5-iodo-3-(2-pyridinylthio)thiophene合成步驟(3PYTT-Br-I) 81 2-5 3PTT與3PYTT的理論計算結果 82 2-6 參考文獻 87 第三章 實驗內容(二) - 聚合實驗步驟與結果討論 88 3-1 前言 89 3-2 poly[3-(butylthio)thiophene] (P3BTT)的合成 97 3-2-1 以2,5-dibromo-3-(butylthio)thiophene為單體並以GRIM法聚合之合成步驟與結果 97 3-3 poly[3-(phenylthio)thiophene] (P3PTT)的合成 99 3-3-1 以GRIM法合成P3PTT時,2,5-dibromo-3-(phenylthio)thiophene (3PTT-Br2)在不同溫度時與t-BuMgCl的反應選擇性探討 99 3-3-2 以GRIM法合成P3PTT時,3PTT-Br2與不同官能基之Grignard reagent的反應選擇性研究 111 3-3-4 以3PTT-Br2為單體並以GRIM法合成P3PTT時,其他控制實驗結果 121 3-3-5 以2-bromo-5-iodo-3-(phenylthio)thiophene (3PTT-Br-I)為單體並以GRIM法進行聚合 124 3-3-6 以2-bromo-3-(phenylthio)thiophene (3PTT-Br)為單體並以McCullough法聚合之實驗步驟與結果 127 3-4 poly[3-(2-pyridinylthio)thiophene] (P3PYTT)的合成 133 3-4-1 以2,5-dibromo-3-(2-pyridinylthio)thiophene (3PYTT-Br2)為單體並以GRIM法聚合的實驗步驟與結果 133 3-4-2 以2-bromo-3-(2-pyridinylthio)thiophene (3PYTT-Br)為單體並以McCullough法聚合的實驗步驟與結果 136 3-4-3 以2-bromo-5-iodo-3-(2-pyridinylthio)thiophene (3PYTT-Br-I)為單體並以GRIM法聚合的實驗步驟與結果 139 3-5 各種方法所合成之聚噻吩的H-T選擇性比較 144 3-5-1 文獻上關於聚噻吩的H-T選擇性研究結果 144 3-5-2 poly[3-(butylthio)thiophene]的H-T選擇性研究 148 3-5-3 poly[3-(phenylthio)thiophene]的H-T選擇性研究 149 3-5-4 poly[3-(2-pyridinylthio)thiophene]的H-T選擇性研究 158 3-6 參考文獻 163 第四章 實驗內容(三) - 染料敏化太陽能電池元件效率的量測與高分子之電子能階鑑定 164 4-1 前言 165 4-2 染料敏化太陽能電池的元件製備與量測 169 4-2-1 元件製備 169 4-2-2 光電轉換效率的量測 169 4-2-3 IPCE 的量測 170 4-2-4 TiO2之吸附性測試 171 4-3 P3PTT與P3PYTT的染料敏化太陽能電池效率及相關測試結果 172 4-3-1 P3PTT之元件結果 172 4-3-2 P3PYTT元件測量結果 182 4-4 染料與TiO2及電解質之能階探討 191 4-5 結論 198 4-6 參考文獻 200 五、附錄 201 附錄1. 3-(butylthio)thiophene 之 1H-NMR 光譜 202 附錄2. 3-(butylthio)thiophene 之 13C-NMR 光譜 202 附錄3. 2,5-dibromo-3-(butylthio)thiophene 之 1H-NMR 光譜 203 附錄4. 2,5-dibromo-3-(butylthio)thiophene 之 13C-NMR 光譜 203 附錄5. 3-(phenylthio)thiophene之1H-NMR光譜 204 附錄6. 3-(phenylthio)thiophene之13C-NMR光譜 204 附錄7. 2-bromo-3-(phenylthio)thiophene之1H-NMR光譜 205 附錄8. 2-bromo-3-(phenylthio)thiophene之13C-NMR光譜 205 附錄9. 2,5-dibromo-3-(phenylthio)thiophene之1H-NMR光譜 206 附錄10. 2,5-dibromo-3-(phenylthio)thiophene之13C-NMR光譜 206 附錄11. 2-bromo-5-iodo-3-(phenylthio)thiophene之1H-NMR光譜 207 附錄12. 2-bromo-5-iodo-3-(phenylthio)thiophene之13C-NMR光譜 207 附錄13. 3-(2-pyridinylthio)thiophene之1H-NMR光譜 208 附錄14. 3-(2-pyridinylthio)thiophene之13C-NMR光譜 208 附錄15. 2-bromo-3-(2-pyridinylthio)thiophene之1H-NMR光譜 209 附錄16. 2-bromo-3-(2-pyridinylthio)thiophene之13C-NMR光譜 209 附錄17. 2,5-dibromo-3-(2-pyridinylthio)thiophene之1H-NMR光譜 210 附錄18. 2,5-dibromo-3-(2-pyridinylthio)thiophene之13C-NMR光譜 210 附錄19. 2-bromo-5-iodo-3-(2-pyridinylthio)thiophene之1H-NMR光譜 211 附錄20. 2-bromo-5-iodo-3-(2-pyridinylthio)thiophene之13C-NMR光譜 211 附錄21. P3PTT-LDA之1H-NMR光譜 212 附錄22. P3PTT-LDA之13C-NMR光譜 212 附錄23. P3PTT-di-Br-GRIM之1H-NMR光譜 213 附錄24. P3PTT-di-Br-GRIM之13C-NMR光譜 213 附錄25. P3PTT-FB095之1H-NMR光譜 214 附錄26. P3PTT-FB095之13C-NMR光譜 214 附錄27. P3PTT-FB119之1H-NMR光譜 215 附錄28. P3PTT-FB119之13C-NMR光譜 215 附錄29. P3PYTT-di-Br-GRIM之1H-NMR光譜 216 附錄30. P3PYTT-di-Br-GRIM之13C-NMR光譜 216 附錄31. P3PYTT-FB143-1之1H-NMR光譜 217 附錄32. P3PYTT-FB143-1之13C-NMR光譜 217 附錄33. 3-(butylthio)thiophene之Mass光譜 218 附錄34. 2,5-diromo-3-(butylthio)thiophene之Mass光譜 218 附錄35. 3-(phenylthio)thiophene之HR-Mass光譜 219 附錄37. 2,5-dibromo-3-(phenylthio)thiophene之HR-Mass光譜 220 附錄38. 2-bromo-5-iodo-3-(phenylthio)thiophene之HR-Mass光譜 220 附錄39. 3-(2-pyridinylthio)thiophene之HR-Mass光譜 221 附錄40. 2-bromo-3-(2-pyridinylthio)thiophene之HR-Mass光譜 221 附錄41. 2,5-dibromo-3-(2-pyridinylthio)thiophene之HR-Mass光譜 222 附錄42. 2-bromo-5-iodo-3-(2-pyridinylthio)thiophene之HR-Mass光譜 222 附錄43. 3PTT最佳化之原子直角座標值列表 223 附錄44. Energy level and HOMO、LUMO of 3PTT 224 附錄45. 3PTT之HOMO、LUMO電子雲分佈圖 225 附錄46. 3PYTT最佳化之原子直角座標值列表 226 附錄47. Energy level and HOMO、LUMO of 3PYTT 227 附錄48. 3PYTT之HOMO、LUMO電子雲分佈圖 228

    1. Natta, G.; Mazzanti, G.; Corradini, P. Atti Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur. 1958, 25, 3.
    2. Diaz, A. F.; Kanazdwd, K. K. in “Extended Linear Chain Compo- unds”(G. S. Miller, ed.), Plenum, New York, 1982, p3.
    3. Baughman, R. M.; Bredas, J. L.; Elsenbaumer, R. L.; Shacklette, L. W. Chem. Rev. 1982, 82, 209.
    4. Kaneto, K.; Ura, S.; Yoshino, K.; Inuishi, Y. Jap. J. of App. Phys. 1984, 23, 189.
    5. MacDiarmid, A. G.; Chiang, J. C.; Halpern, M.; Huang, W. S.; Mu, S. L.; Somasir, N. L. D. Mol, Cryst. Liq. Cryst. 1985, 121, 173.
    6. (a) Patil, A. O.; Heeger, A. J.; Wudl, F. Chem. Rew. 1988, 88, 183. (b) MacDiarmid, A. G.; Yang, L. S.; Huang, W. S.; Humphrey, B. D. Synth. Met. 1987, 18, 393. (c) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477. (d) One-Dimensional Metals: Physics and Materials Science; Roth, S. VCH: Weinheim, 1995.
    7. Hyodo, K. Electrochim. Acta. 1994, 39, 265.
    8. MacDiarmid, A. G.; Yang, L. S.; Huang, W. S.; Humphrey, B. D. Synth. Met. 1987, 18, 393.
    9. Hoa, D. T.; Kumar, T. N. S.; Punekar, N. S.; Srinivasa, R. S.; Lai, R.; Contractor, A. Q. Anal. Chem. 1992, 64, 2645.
    10. Paul, E. W.; Ricco, A. J.; Wrighton, M. S. J. Phy. Chem. 1985, 89, 1441.
    11. Chao, S.; Wrighton, M. S. J. Am. Chem. Soc. 1987, 109, 6627.
    12. Osaheni, J. A.; Jenekhe, S. A.; Vanherzeel, H.; Meth, J. S. Chem. Mater. 1991, 3, 218.
    13. (a) Nishino, A. J. Power Sources 1996, 60, 137. (b) Yamamoto, H.; Oshima, M.; Fukuda, M.; Isa, I.; Yoshino, K. J. Power Sources 1996, 60, 173.
    14. Sugimoto, R.; Taketa, S.; Gu, H. B.; Yoshino, K. Chem. Express 1986, 1, 635–638.
    15. (a) Osaka, I.; McCullough, R. D. Acc. Chem. Res. 2008, 41, 1202. (b) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. 1992, 70.
    16. Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D. Macromolecules 2001, 34, 4324.
    17. Chen, T.-A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233.
    18. Bjøruholm, T.; Greve, D. R.; Geisler, T.; Petersen, J. C.; Jayaraman, M.; McCullough, R. D. Adv. Mater. 1996, 8, 920.
    19. Chen, T.-A.; Rieke, D. R. J. Am. Chem. Soc. 1992, 114, 10087
    20. Hagfeldt, A.; Grätzel M. Chem. Rev. 1995, 95, 49
    21. Yang, H.-Y.; Yen, Y.-S.; Hsu, Y.-C.; Chou, H. H.; Lin, J. T. Org. Lett. 2010, 12, 17.
    22. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
    23. Thompson, B. C.; Frechet, J. M. Angew. Chem. Int. Ed. 2008, 47, 58.
    24. Huo, L.; Zhou, Y.; Li, Y. Macromol. Rapid Commun. 2009, 30, 925.
    25. Senadeera, G. K. R.; Nakamura, K.; Kitamura, T.; Wada, Y.; Yanagida, S. Appl. Phys. Lett. 2003, 83 5470.
    1. Yang, S. G.; Kim, Y. H. Tetrahedron Lett. 1999, 40, 6051.
    2. Blackmore, I. J.; Boa, A. N.; Murray, E. J.; Dennis, M.; Woodward, S. Tetrahedron Lett. 1999, 40, 6671.
    3. Noda, Y.; Kashima, M. Tetrahedron Lett. 1997, 38, 6225.
    4. Zupan, M.; Iskra, J.; Stavber, S. Tetrahedron Lett. 1997, 38, 6305.
    5. Carreno, M. C.; Ruano, J. L. G.; Sanz, G.; Toledo, M. A.; Urbano, A. Tetrahedron Lett. 1996, 37, 4081.
    6. Bradzil, L. C.; Cutler, C. J. J. Org. Chem. 1994, 59, 6233.
    7. Brunel, Y.; Rousseau, G. Tetrahedron Lett. 1995, 45, 8217.
    8. Hubig, S. M.; Jung, W.; Kochi, J. K. J. Org. Chem. 1994, 59, 6233.
    9. Barluenga, J.; Gonzalez, J. M.; Garcia-Martin, M. A.; Campos, P. J.; Asensio, G. J. Org. Chem. 1993, 58, 2058.
    10. Sy, W.-W. Tetrahedron Lett. 1993, 34, 6223.
    11. Bachky, A.; Foubelo, F.; Yus, M. Tetrahedron 1994, 50, 5139.
    12. Edgar, K. J.; Falling, S. N. J. Org. Chem. 1990, 55, 5287.
    13. Olah, G. A.; Qi, W.; Sandford, G.; Prakash, G. K. S. J. Org. Chem. 1993, 58, 3194.
    14. Robert S. Loewe; Paul C. Ewbank; Jinsong Liu; Lei Zhai; Richard D. McCullough. Macromolecules, 2001, 34, 4324
    15. 中興大學化學系陳耀鐘教授93年國科會報告
    16. Anne-Sophie Castanet, Franc¸oise Colobert, Pierre-Emmanuel Broutin. Tetrahedron Lett., 2002, 43, 5047.
    17. V. V. Zhdankin, A. Y. Koposov, and N. V. Yashin. Tetrahedran Lett., 2002, 43, 5735
    18. Osaheni, J. A.; Jenekhe, S. A.; Vanherzeel, H.; Meth, J. S. Chem. Mater. 1991, 3, 218
    19. (a) Shuxin, T.; Jin, Z.; Meixiang, W.; Qingbo, M.; Yuliang, L.; Lei, J.; Daoben, Z. J. Phys. Chem. B2004, 108, 18693.(b) Shuxin, T.;Jin, Z.; Bofei, X.; Meixiang, W.; Qingbo M.; Yuliang, L.; Lei, J.; Daoben, Z. Langmuir 2004, 20,2934.
    20. Kittle, C. Introduction to Solid State Physics, 6th ed.; John Wiley & Sons, Singapore, 1986.
    1. Itaru Osaka, Richard D. McCullough. Acc. Chem. Res., 2008, 41 , 1202
    2. Xiaoming Wu, Tian-An Chen, and Reuben D. Rieke. Macromolecules 1996, 29, 7671
    3. Francesca Goldoni, Dario Iarossi, Adele Mucci, Luisa Schenetti, Massimo Zambianchi. J. Mater. Chem., 1997, 7, 593
    4. Robert S. Loewe, Paul C. Ewbank, Jinsong Liu, Lei Zhai, Richard D. McCullough. Macromolecules, 2001, 34, 4324
    5. Chen T.-A, Wu X.-M, Rieke. R. D. J. A. Chem. Soc., 1995, 117, 233
    6. Chen T.-A, Rieke. R. D. J. A. Chem. Soc., 1992, 114, 10087
    1. Claire H. Woo, Barry C. Thompson, Bumjoon J. Kim, Michael F. Toney, Jean M. J. Frechet. J. Am.Chem. Soc. 2008, 130, 16324.
    2. Schilinsky P., Asawapirom U., Scherf U., Biele M., Brabec, C. J. Chem. Mater. 2005, 17, 2175.
    3. Ma M., Kim J. Y., Lee K., Heeger A. J. Macromol. Rapid Commun. 2007, 28, 1776.
    4. Kim Y., Cook S., Tuladhar S. M., Choulis S. A., Nelson J., Durrant J. R., D. D. C. Bradley, Giles M., McCullough I., Ha C. S., Ree M. Nat. Mater, 2006, 5, 197.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE