研究生: |
葉勇賢 Yeh, Yong-Xian |
---|---|
論文名稱: |
摻氟二氧化錫與四氧化三鈷核殼材料於質子交換膜電解水器之應用 Applications of FTO@Co3O4 core-shell materials in proton exchange membrane water electrolyzers |
指導教授: |
呂世源
Lu, Shih-Yuan |
口試委員: |
蔡德豪
Tsai, De-Hao 李建良 Lee, Chien-Liang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 電觸媒 、水分解 、析氧反應 、電解水器 |
外文關鍵詞: | electrocatalyst, water splitting, oxygen evolution reaction, electrolyzer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「永續發展」一詞近年來備受注目,如何與大自然和平相處的同時又能繼續推動人類文明進步儼然已成為各國的發展目標。替代性能源的發展開花結果,只為了早日達成碳中和的目標。綠色氫能是許多替代性能源中極具發展潛力的能源之一,透過電解水陰極的析氫反應(Hydrogen Evolution Reaction, HER)能夠解決再生能源間歇性發電的問題,將電能轉換成化學能的形式存儲於高能量密度的氫氣作為能源載體,再以燃料電池方式發電。質子交換膜電解水器(Proton Exchange Membrane Water Electrolyzer, PEMWE)擁有體積小、高產氫效率和方便分離產物的優點,成為商業化綠色產氫的解決方案之一。
PEMWE最大的缺點為設置成本高昂,除了硬體設備的成本外,長時間操作下需定期更換陰陽極觸媒材料以維持高效率更是一筆可觀的花費。不同於鹼性和中性電解水條件,PEMWE的陽極析氧反應(Oxygen Evolution Reaction, OER)之操作環境十分嚴苛(酸性、高氧化電位),在過去數十年的文獻中僅有貴金屬觸媒(二氧化銥、二氧化釕)才有比較優秀且穩定的催化表現,且析氧反應牽涉到四個電子轉移,使其為水分解速率決定步驟。因此,本研究中以PEMWE為最終的水分解產氫測試平台,開發出在液相酸性條件下可長效穩定催化析氧反應的非貴金屬陽極觸媒材料,並透過膜電極模組(Membrane Electrode Assembly, MEA)的組裝將觸媒材料轉移至PEMWE平台上,進行相關水分解催化研究。
本研究中開發出以摻氟氧化錫為核、四氧化三鈷為殼之材料FTO@Co3O4,其於0.5 M硫酸中,催化OER達成電流密度10 mA cm-2之過電位為511 mV,並且在電流密度10 mA cm-2操作21.5小時,操作電位僅上升2%。將FTO@Co3O4噴塗於質子交換膜表面,在PEMWE測試平台上作為陽極觸媒(3 mg cm-2),陰極材料使用商用鉑碳觸媒(0.2 mgPtC cm-2),在室溫下電位為2 V時達成的電流密度為0.205 A cm-2,並且在電流密度10 mA cm-2下操作21.5小時,操作電位僅上升5.2%。在70 oC下電位為2 V時達成的電流密度為0.258 A cm-2,並且在電流密度10 mA cm-2下操作50小時,操作電位僅上升5.2%。以非貴金屬元素作為PEMWE陽極觸媒而言,實屬優異。
Sustainable developments have highly attracted a great deal of attention in recent years. To meet the goal of carbon neutrality, “green hydrogen” becomes one of the most promising alternative energy candidates because of its high energy densities. Through electrochemical water splitting, one can covert electric powers to chemical energies with the “hydrogen evolution reaction (HER)” to resolve the unreliability issue of renewable energies. One can then generate the electric powers by using hydrogen fuel cells. Proton exchange membrane water electrolyzers(PEMWE), possessing advantages of compact size, high hydrogen production efficiency and convenience of hydrogen separation become one of the promising routes for green hydrogen production.
The main disadvantage of PEMWE is the high cost of installation and the periodical replacement of the noble metal based electrocatalyst. Oxygen evolution reaction (OER) involves a four-electron transfer and thus is the bottleneck of electrochemical water splitting. Different from alkaline or neutral water splitting, the operation condition of OER in PEMWE is harsh because of the strong acidity and high oxidation potential involved. Conventionally, only noble metal-based catalysts like iridium and ruthenium oxide can survive and show great OER electrocatalytic performance in past research. In this study, we aim to develop a non-noble metal-based catalyst which can stably catalyze the OER in acidic electrolytes. Furthermore, through the membrane electrode assembly technique, we apply the catalyst to a PEMWE platform for water splitting.
We successfully develop a core-shell nanostructured material composed of F-doped tin oxide as core, and cobalt oxide as shell (FTO@Co3O4). This catalyst achieves an OER overpotential of 511 mV at 10 mA cm-2 in 0.5 M sulfuric acid, and the operation potential increases by 2% after 21.5 hours operation at 10 mA cm-2. In the PEMWE platform, we use a catalyst coated membrane (CCM) method to spray-coating FTO@Co3O4 on to the proton exchange membrane as the anode and Pt/C as the cathode. It shows superior performances as compared with other non-noble metal catalysts at room temperature, with a current density of 0.205 A cm-2 achieved at 2V, and a 5.2% increase in cell voltage after 21.5 hours operation under 10 mA cm-2. At 70oC, it has current density of 0.258 A cm-2 achieved at 2V, and a 5.2% increase in cell voltage after 50 hours operation under 10 mA cm-2.
1. Kazim, A. and T.N. Veziroglu, Utilization of solar–hydrogen energy in the UAE to maintain its share in the world energy market for the 21st century. Renewable Energy, 2001. 24(2): p. 259-274.DOI: 10.1016/S0960-1481(00)00199-3.
2. Boyano, A., A.M. Blanco-Marigorta, T. Morosuk, and G. Tsatsaronis, Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy, 2011. 36(4): p. 2202-2214.DOI: 10.1016/j.energy.2010.05.020.
3. Abdul Mujeebu, M., Hydrogen and syngas production by superadiabatic combustion – A review. Applied Energy, 2016. 173: p. 210-224.DOI: 10.1016/j.apenergy.2016.04.018.
4. Kalinci, Y., A. Hepbasli, and I. Dincer, Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 2009. 34(21): p. 8799-8817.DOI: 10.1016/j.ijhydene.2009.08.078.
5. Barbir, F., PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy, 2005. 78(5): p. 661-669.DOI: 10.1016/j.solener.2004.09.003.
6. Atlam, O. and M. Kolhe, Equivalent electrical model for a proton exchange membrane (PEM) electrolyser. Energy Conversion and Management, 2011. 52(8): p. 2952-2957.DOI: https://doi.org/10.1016/j.enconman.2011.04.007.
7. Sapountzi, F.M., J.M. Gracia, C.J. Weststrate, H.O.A. Fredriksson, and J.W. Niemantsverdriet, Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 2017. 58: p. 1-35.DOI: 10.1016/j.pecs.2016.09.001.
8. Aricò, A.S., S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, and V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. Journal of Applied Electrochemistry, 2013. 43(2): p. 107-118.DOI: 10.1007/s10800-012-0490-5.
9. Sardar, K., E. Petrucco, C.I. Hiley, J.D.B. Sharman, P.P. Wells, A.E. Russell, R.J. Kashtiban, J. Sloan, and R.I. Walton, Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores. Angewandte Chemie International Edition, 2014. 53(41): p. 10960-10964.DOI: 10.1002/anie.201406668.
10. Ogawa, T., M. Takeuchi, and Y. Kajikawa, Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research. Sustainability, 2018. 10(2).DOI: 10.3390/su10020478.
11. Siracusano, S., N. Van Dijk, E. Payne-Johnson, V. Baglio, and A.S. Aricò, Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Applied Catalysis B: Environmental, 2015. 164: p. 488-495.DOI: 10.1016/j.apcatb.2014.09.005.
12. Cheng, J., H. Zhang, G. Chen, and Y. Zhang, Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis. Electrochimica Acta, 2009. 54(26): p. 6250-6256.DOI: 10.1016/j.electacta.2009.05.090.
13. Li, G., H. Yu, W. Song, X. Wang, Y. Li, Z. Shao, and B. Yi, Zeolite-templated IrxRu1−xO2 electrocatalysts for oxygen evolution reaction in solid polymer electrolyte water electrolyzers. International Journal of Hydrogen Energy, 2012. 37(22): p. 16786-16794.DOI: 10.1016/j.ijhydene.2012.08.087.
14. Huynh, M., D.K. Bediako, and D.G. Nocera, A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society, 2014. 136(16): p. 6002-6010.DOI: 10.1021/ja413147e.
15. Huynh, M., C. Shi, S.J.L. Billinge, and D.G. Nocera, Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society, 2015. 137(47): p. 14887-14904.DOI: 10.1021/jacs.5b06382.
16. Frydendal, R., E.A. Paoli, I. Chorkendorff, J. Rossmeisl, and I.E.L. Stephens, Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO2. Advanced Energy Materials, 2015. 5(22): p. 1500991.DOI: 10.1002/aenm.201500991.
17. Suen, N.-T., S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.DOI: 10.1039/C6CS00328A.
18. Fang, M., D. Guofa, R. Wei, and J. Ho, Hierarchical Nanostructures: Design for Sustainable Water Splitting. Advanced Energy Materials, 2017. 7: p. 1700559.DOI: 10.1002/aenm.201700559.
19. Arbabi, F., Oxygen Bubble Propagation in Polymer Electrolyte Membrane
Electrolyzer Porous Transport Layers 2017.
20. Kim, J.-D. and A. Ohira, Water Electrolysis Using a Porous IrO2/Ti/IrO2 Catalyst Electrode and Nafion Membranes at Elevated Temperatures. Membranes, 2021. 11(5).DOI: 10.3390/membranes11050330.
21. Ju, H., S. Badwal, and S. Giddey, A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production. Applied Energy, 2018. 231: p. 502-533.DOI: 10.1016/j.apenergy.2018.09.125.
22. Nikolaidis, P. and A. Poullikkas, A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 2017. 67: p. 597-611.DOI: 10.1016/j.rser.2016.09.044.
23. Carmo, M., D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934.DOI: 10.1016/j.ijhydene.2013.01.151.
24. Xu, W. and K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. International Journal of Hydrogen Energy, 2010. 35(21): p. 12029-12037.DOI: 10.1016/j.ijhydene.2010.08.055.
25. Grigoriev, S.A., P. Millet, S.A. Volobuev, and V.N. Fateev, Optimization of porous current collectors for PEM water electrolysers. International Journal of Hydrogen Energy, 2009. 34(11): p. 4968-4973.DOI: 10.1016/j.ijhydene.2008.11.056.
26. Chisholm, G., P.J. Kitson, N.D. Kirkaldy, L.G. Bloor, and L. Cronin, 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energy & Environmental Science, 2014. 7(9): p. 3026-3032.DOI: 10.1039/C4EE01426J.
27. Rozain, C., E. Mayousse, N. Guillet, and P. Millet, Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO2-based anodes. Applied Catalysis B: Environmental, 2016. 182: p. 153-160.DOI: 10.1016/j.apcatb.2015.09.013.
28. Yin, L., T. Yang, X. Ding, M. He, W. Wei, T. Yu, and H. Zhao, Synthesis of phosphorus-iridium nanocrystals and their superior electrocatalytic activity for oxygen evolution reaction. Electrochemistry Communications, 2018. 94: p. 59-63.DOI: 10.1016/j.elecom.2018.08.009.
29. Giancola, S., M. Zatoń, Á. Reyes-Carmona, M. Dupont, A. Donnadio, S. Cavaliere, J. Rozière, and D.J. Jones, Composite short side chain PFSA membranes for PEM water electrolysis. Journal of Membrane Science, 2019. 570-571: p. 69-76.DOI: 10.1016/j.memsci.2018.09.063.
30. Siracusano, S., V. Baglio, F. Lufrano, P. Staiti, and A.S. Aricò, Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane. Journal of Membrane Science, 2013. 448: p. 209-214.DOI: 10.1016/j.memsci.2013.07.058.
31. Ramakrishna, S.U.B., D. Srinivasulu Reddy, S. Shiva Kumar, and V. Himabindu, Nitrogen doped CNTs supported Palladium electrocatalyst for hydrogen evolution reaction in PEM water electrolyser. International Journal of Hydrogen Energy, 2016. 41(45): p. 20447-20454.DOI: 10.1016/j.ijhydene.2016.08.195.
32. Shiva Kumar, S., S.U.B. Ramakrishna, B. Rama Devi, and V. Himabindu, Phosphorus-doped graphene supported palladium (Pd/PG) electrocatalyst for the hydrogen evolution reaction in PEM water electrolysis. International Journal of Green Energy, 2018. 15(10): p. 558-567.DOI: 10.1080/15435075.2018.1508468.
33. Morimitsu, M., R. Otogawa, and M. Matsunaga, Effects of cathodizing on the morphology and composition of IrO2/Ta2O5/Ti anodes. Electrochimica Acta, 2000. 46(2): p. 401-406.DOI: 10.1016/S0013-4686(00)00598-3.
34. Hao, C., H. Lv, C. Mi, Y. Song, and J. Ma, Investigation of Mesoporous Niobium-Doped TiO2 as an Oxygen Evolution Catalyst Support in an SPE Water Electrolyzer. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 746-756.DOI: 10.1021/acssuschemeng.5b00531.
35. Puthiyapura, V.K., S. Pasupathi, H. Su, X. Liu, B. Pollet, and K. Scott, Investigation of supported IrO2 as electrocatalyst for the oxygen evolution reaction in proton exchange membrane water electrolyser. International Journal of Hydrogen Energy, 2014. 39(5): p. 1905-1913.DOI: 10.1016/j.ijhydene.2013.11.056.
36. Corrales-Sánchez, T., J. Ampurdanés, and A. Urakawa, MoS2-based materials as alternative cathode catalyst for PEM electrolysis. International Journal of Hydrogen Energy, 2014. 39(35): p. 20837-20843.DOI: 10.1016/j.ijhydene.2014.08.078.
37. Giovanni, C.D., Á. Reyes-Carmona, A. Coursier, S. Nowak, J.M. Grenèche, H. Lecoq, L. Mouton, J. Rozière, D. Jones, J. Peron, M. Giraud, and C. Tard, Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis. ACS Catalysis, 2016. 6(4): p. 2626-2631.DOI: 10.1021/acscatal.5b02443.
38. Wang, J., D. Gao, G. Wang, S. Miao, H. Wu, J. Li, and X. Bao, Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. Journal of Materials Chemistry A, 2014. 2(47): p. 20067-20074.DOI: 10.1039/C4TA04337E.
39. Mondschein, J.S., J.F. Callejas, C.G. Read, J.Y.C. Chen, C.F. Holder, C.K. Badding, and R.E. Schaak, Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chemistry of Materials, 2017. 29(3): p. 950-957.DOI: 10.1021/acs.chemmater.6b02879.
40. Dinh Nguyen, M.T., A. Ranjbari, L. Catala, F. Brisset, P. Millet, and A. Aukauloo, Implementing molecular catalysts for hydrogen production in proton exchange membrane water electrolysers. Coordination Chemistry Reviews, 2012. 256(21): p. 2435-2444.DOI: 10.1016/j.ccr.2012.04.040.
41. Millet, P., R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, and C. Etiévant, PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052.DOI: 10.1016/j.ijhydene.2009.09.015.
42. Das, R.K.V., S.V.; Pulido, R.M.; Pucher, I.; Turiansky, M.; Rinzler, A.G, A Pt-Free, Activated Carbon Nanotube Cathode, PEM Water Splitting Electrolyzer. 2016. p. 1423.
43. Rodríguez-García, B., Á. Reyes-Carmona, I. Jiménez-Morales, M. Blasco-Ahicart, S. Cavaliere, M. Dupont, D. Jones, J. Rozière, J.R. Galán-Mascarós, and F. Jaouen, Cobalt hexacyanoferrate supported on Sb-doped SnO2 as a non-noble catalyst for oxygen evolution in acidic medium. Sustainable Energy & Fuels, 2018. 2(3): p. 589-597.DOI: 10.1039/C7SE00512A.
44. Lai, Q., V. Vediyappan, K.-F. Aguey-Zinsou, and H. Matsumoto, One-Step Synthesis of Carbon-Protected Co3O4 Nanoparticles toward Long-Term Water Oxidation in Acidic Media. Advanced Energy and Sustainability Research, 2021. 2(11): p. 2100086.DOI: 10.1002/aesr.202100086.
45. Li, A., H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, and R. Nakamura, Stable Potential Windows for Long-Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angewandte Chemie International Edition, 2019. 58(15): p. 5054-5058.DOI: 10.1002/anie.201813361.
46. Lim, J.Y., G. Rahman, S.Y. Chae, K.-Y. Lee, C.-S. Kim, and O.-S. Joo, Highly stable RuO2/SnO2 nanocomposites as anode electrocatalysts in a PEM water electrolysis cell. International Journal of Energy Research, 2014. 38(7): p. 875-883.DOI: 10.1002/er.3081.
47. Geiger, S., O. Kasian, A.M. Mingers, K.J.J. Mayrhofer, and S. Cherevko, Stability limits of tin-based electrocatalyst supports. Scientific Reports, 2017. 7(1): p. 4595.DOI: 10.1038/s41598-017-04079-9.
48. Wu, S., S. Yuan, L. Shi, Y. Zhao, and J. Fang, Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. J Colloid Interface Sci, 2010. 346(1): p. 12-16.DOI: 10.1016/j.jcis.2010.02.031.
49. Wu, S., S. Yuan, L. Shi, Y. Zhao, and J. Fang, Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. Journal of Colloid and Interface Science, 2010. 346(1): p. 12-16.DOI: 10.1016/j.jcis.2010.02.031.
50. Kim, W.-S., Y. Hwa, H.-C. Kim, J.-H. Choi, H.-J. Sohn, and S.-H. Hong, SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Research, 2014. 7(8): p. 1128-1136.DOI: 10.1007/s12274-014-0475-2.
51. S. Jayashree, R. and P. Vishnu Kamath, Electrochemical synthesis of α-cobalt hydroxide. Journal of Materials Chemistry, 1999. 9(4): p. 961-963.DOI: 10.1039/A807000H.
52. P. Xu, Z. and H. C. Zeng, Thermal evolution of cobalt hydroxides: a comparative study of their various structural phases. Journal of Materials Chemistry, 1998. 8(11): p. 2499-2506.DOI: 10.1039/A804767G.
53. Yim, S.D., S.J. Kim, J.H. Baik, I.S. Nam, Y.S. Mok, J.-H. Lee, B.K. Cho, and S.H. Oh, Decomposition of Urea into NH3 for the SCR Process. Industrial & Engineering Chemistry Research, 2004. 43(16): p. 4856-4863.DOI: 10.1021/ie034052j.
54. Cochran, S.J. and F.P. Larkins, Surface reduction of some transition-metal oxides. An X-ray photoelectron spectroscopic study of iron, cobalt, nickel and zinc oxides. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1985. 81(9): p. 2179-2190.DOI: 10.1039/F19858102179.
55. Chuang, T.J., C.R. Brundle, and D.W. Rice, Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surface Science, 1976. 59(2): p. 413-429.DOI: 10.1016/0039-6028(76)90026-1.
56. Natarajan, K., E. Munirathinam, and T.C.K. Yang, Operando Investigation of Structural and Chemical Origin of Co3O4 Stability in Acid under Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021. 13(23): p. 27140-27148.DOI: 10.1021/acsami.1c07267.
57. Tyuliev, G. and S. Angelov, The nature of excess oxygen in Co3O4+ϵ. Applied Surface Science, 1988. 32(4): p. 381-391.DOI: 10.1016/0169-4332(88)90089-X.
58. Yoneda, H., Stability of Cobalt (III) and Chromium (III) Ammine Complexes in a Strongly Alkaline Solution. Bulletin of the Chemical Society of Japan, 1958. 31(1): p. 74-79.DOI: 10.1246/bcsj.31.74.
59. Wang, C., H. Zhan, X. Lu, R. Jing, H. Zhang, L. Yang, X. Li, F. Yue, D. Zhou, and Q. Xia, A recyclable cobalt(iii)–ammonia complex catalyst for catalytic epoxidation of olefins with air as the oxidant. New Journal of Chemistry, 2021. 45(4): p. 2147-2156.DOI: 10.1039/D0NJ05466F.
60. Green, M. and H. Taube, The Mechanism of Base Hydrolysis of Substituted Pentaamminecobalt(III) Complexes. Inorganic Chemistry, 1963. 2(5): p. 948-950.DOI: 10.1021/ic50009a016.
61. Xiao, Z., Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, Z. Shu, G. Zhang, H. Duan, Y. Wang, Y. Zou, R. Chen, and S. Wang, Operando Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co3O4 for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020. 142(28): p. 12087-12095.DOI: 10.1021/jacs.0c00257.
62. Wang, X., X. Li, J. Mu, S. Fan, X. Chen, L. Wang, Z. Yin, M. Tadé, and S. Liu, Oxygen Vacancy-rich Porous Co3O4 Nanosheets toward Boosted NO Reduction by CO and CO Oxidation: Insights into the Structure–Activity Relationship and Performance Enhancement Mechanism. ACS Applied Materials & Interfaces, 2019. 11(45): p. 41988-41999.DOI: 10.1021/acsami.9b08664.
63. Ramis-Ramos, G., ANTIOXIDANTS | Synthetic Antioxidants, in Encyclopedia of Food Sciences and Nutrition (Second Edition), B. Caballero, Editor. 2003, Academic Press: Oxford. p. 265-275.
64. Da Silva, L.M., J.F.C. Boodts, and L.A. De Faria, Oxygen evolution at RuO2(x)+Co3O4(1−x) electrodes from acid solution. Electrochimica Acta, 2001. 46(9): p. 1369-1375.DOI: 10.1016/S0013-4686(00)00716-7.
65. Jin, H., C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, and S.-Z. Qiao, Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018. 118(13): p. 6337-6408.DOI: 10.1021/acs.chemrev.7b00689.
66. Bajdich, M., M. García-Mota, A. Vojvodic, J.K. Nørskov, and A.T. Bell, Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society, 2013. 135(36): p. 13521-13530.DOI: 10.1021/ja405997s.
67. Frensch, S.H., A.C. Olesen, S.S. Araya, and S.K. Kær, Model-supported characterization of a PEM water electrolysis cell for the effect of compression. Electrochimica Acta, 2018. 263: p. 228-236.DOI: 10.1016/j.electacta.2018.01.040.
68. Lufrano, F., P. Staiti, and M. Minutoli, Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy. Journal of Power Sources, 2003. 124(1): p. 314-320.DOI: 10.1016/S0378-7753(03)00589-5.
69. Wu, X., J. Tayal, S. Basu, and K. Scott, Nano-crystalline RuxSn1−xO2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers. International Journal of Hydrogen Energy, 2011. 36(22): p. 14796-14804.DOI: 10.1016/j.ijhydene.2011.01.067.
70. Li, A., H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, and R. Nakamura, Stable Potential Windows for Long-Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angew Chem Int Ed Engl, 2019. 58(15): p. 5054-5058.DOI: 10.1002/anie.201813361.