簡易檢索 / 詳目顯示

研究生: 張鐸耀
To-Yao Chang
論文名稱: 以有機奈米線為模板製備金屬奈米管
Fabrication of Metallic Nanotubes by Using Organic Nanowires as the Template
指導教授: 彭宗平
Tsong-Pyng Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 70
中文關鍵詞: 有機金屬化合物奈米金屬管濺鍍熱處理
外文關鍵詞: AlQ3, Metal nanotubes, Sputter, Heat treatment
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從1991年Iijima發現奈米碳管以來,已經有許許多多的奈米管如無機奈米管以及金屬奈米管,在這近十年內被積極的研究。此外,一種用於有機發光二極體的有機金屬化合物AlQ3 也在近幾年被研究出可以利用熱蒸鍍法製備奈米線及奈米晶。甚至只要透過熱處理就可以在AlQ3薄膜上長出一維的奈米線。
    本論文旨在利用薄膜熱處理過後長出之AlQ3奈米線作為模板,以物理氣相沉積法製造出金屬奈米管,包括濺鍍鍍覆金與白金於奈米線上,以蒸鍍法鍍覆鎳與鋁,再利用TEM及SEM來分析觀察其表面形貌和結構。並且以島狀成長機制來描述解釋在AlQ3奈米線上生成之金屬奈米管。此外,更進一步利用退火處理使Au以及Pt金屬奈米管的表面平整化,再以TEM及SEM分析觀察其表面結構和形貌之變化。雖然尚未藉此獲得預期之金屬奈米管,但亦提出假設來解釋退火之後所觀察到的結果。


    Since Iijima discovered the carbon nanotubes in 1991, other nanotubes such as inorganic and metallic nanotubes have also been intensively studied in the last decade. In recent years, it has been found that some AlQ3 nanostructures like nanowires and nanoparticles can be made by thermal evaporation method. It was also found that AlQ3 nanowires could be formed after annealing of the film.
    In this study, some metal nanotubes were fabricated by physical vapor deposition using AlQ3 nanowires, which were prepared by heat treatment of the film, as the template. Sputtering was used to deposit Au and Pt layer on nanowires, and thermal evaporation was used for the Ni and Al deposition. The morphology and structure of the metal layer were observed by SEM and TEM. One of the thin-film growth modes, islands mode, was used to explain the formation of the metal layer on AlQ3 nanowires. In addition, the annealing process was used to smoother the surface of Au and Pt layer, and the structure and morphology were analyzed by SEM and TEM again. Although no metal nanotubes have been obtained on expected, a new postulate is proposed to illustrate the above results.

    Table of Contents 摘要 I ABSTRACT II 誌謝 III TABLE OF CONTENTS V CHAPTER 1 INTRODUCTION 1 1.1 Nanoscience and nanotechnology 1 1.2 Aluminum 8-hydroxyquinoline (AlQ3) nanostructured materials 5 1.3 Nanotubes 5 CHAPTER 2 LITERATURE REVIEW 9 2.1 Basic Properties of AlQ3 9 2.1.1 Basic Properties of AlQ3 9 2.1.2 Fabrication and heat treatment of AlQ3 nanostructures 14 2.2 Types of nanotubes 14 2.2.1 Carbon nanotubes (CNTs) 14 2.2.2 TiO2 nanotubes 18 2.2.3 Metallic nanotubes 21 2.3 Comparison of AlQ3 nanowires with other templates in existence 22 2.4 Metal deposition methods 24 CHAPTER 3 EXPERIMENTAL PROCEDURES 28 3.1 Preparation of AlQ3 nanowires 28 3.1.1 Preparation of AlQ3 thin film 28 3.1.2 Heat treatment of AlQ3 thin film 28 3.2 Metal deposition on AlQ3 nanowires 30 3.2.1 Sputtering 30 3.2.2 Thermal evaporation 30 3.3 Heat treatment of metal coated AlQ3 nanowires 33 3.4 Analysis of AlQ3 nanowires and metallic nanotubes 33 3.4.1 Field Emission Gun Scanning Electron Microscopy (FEGSEM) 33 3.4.2 Transmission Electron Microscopy (TEM) 33 CHAPTER 4 RESULTS AND DISCUSSION 35 4.1 As-prepared AlQ3 nanowires 35 4.2 Metal deposition 39 4.2.1 Sputtering 39 4.2.2 Thermal evaporation 45 4.2.3 Formation theory of thin film 45 4.3 Annealed metal nanotubes 51 CHAPTER 5 CONCLUSIONS 65 REFERENCES 67

    References
    [1] Applied Research and Development Institute (http://ardi.scra.org/projects/nanomaterials.shtml)
    [2] S. Veprek, Thin Film Solid 1997, 297, 145.
    [3] A. P. Alivisatos, Sicence 1996, 271, 933.
    [4] G. Schmid, Nanoparticles: From Theory to Application, Institute of Inorganic Chemistry, University Duisburg-Essen, Germany 2004.
    [5] J. Wang, X. Sun, L Chen, and S. Y. Chou, Appl. Phys. Lett. 1999, 75, 2767
    [6] M. Cavallini, and F. Biscarini, Nano Lett. 2003, 3, 1269.
    [7] J. J. Chiu, C. C. Kei, T. P. Perng, and W. S. Wang, Adv. Mater. 2003, 15, 1361.
    [8] J. J. Chiu, W. S. Wang, C. C. Kei, C. P. Cho, T. P. Perng, P. K. Wei, and S. Y. Chiu, Appl. Phys. Lett. 2003, 83, 4607.
    [9] J. J. Chiu, W. S. Wang, C. C. Kei, and T. P. Perng, Appl. Phys.Lett. 2003, 83, 347.
    [10] S. Iijima, Nature 1991, 354, 56.
    [11] T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, and K. Tanigaki, Chem. Phys. Lett. 1993, 209, 83.
    [12] T. W. Ebbesen, Ann. Rev. Mater. Sci. 1994, 24, 235.
    [13] T. W. Ebbesen, and P. M. Ajayan, Nature 1992, 358, 220.
    [14] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 1995, 243, 49.
    [15] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzer, D. T. Cilbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 1996, 273, 486.
    [16] M. Endo, CHEMTECH 1988, 18, 568.
    [17] C. N. R. Rao, A. Govindaraj, R. Sen, B. C. Satishkumar, Mat. Res. Innovat. 1998, 2, 128.
    [18] C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M Nath, CHEMPHYSCHEM. 2001, 2, 78.
    [19] M. D. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 1995, 33, 883.
    [20] W. Y. Jang, N. N. Kulkarini, C. K. Shih, and Z. Yao, Appl. Phys. Lett. 2004, 84, 1177.
    [21] J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier, and S. Bonnamy, Adv. Mater. 1999, 11, 161.
    [22] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature 1997, 386, 377.
    [23] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Appl. Phys. Lett. 1999, 75, 3129.
    [24] L. Qu, G. Shi, X. Wu, and B. Fan, Adv. Mater. 2004, 16, 1200.
    [25] S. H. Zhang, Z. X. Xie, Z. Y. Jiang, X. Xu, J. Xiang, R. B. Huang, and L. S. Zheng, Chem. Commun. 2004, 1106.
    [26] J. H. Park, S. G. Oh, and B. W. Jo, Mater. Chem. Phys. 2004, 87, 301.
    [27] Y. Sun, B. T. Mayers, and Y. Xia, Nano Lett. 2002, 2, 481.
    [28] M. Steinhart, Z. Jia, A. K. Schaper, R. B. Wehrspohn, U. Gosele, and J. H. Wendorff, Adv. Mater. 2003, 15, 706.
    [29] Y. Luo, S. K. Lee, H. Holfmeister, M. Steinhart, and U Gosele, Nano. Lett. 2004, 4, 143.
    [30] J. Bao, C. Tie, Z. Xu, Q. Zhou, D. Shen, and Q. Ma, Adv. Mater. 2001, 13, 1631.
    [31] A. Curioni, R. Treusch, E. Haskal, C. Heske, S. Kakar, T. van Buuren, W. Andreoni, F. J. Himpsel, P. Seidler, and L. J. Terminello, Appl. Phys. Lett. 1998, 72, 1575.
    [32] A. Curioni, and W. Andreoni, J. Am. Chem. Soc. 1999, 121, 8216.
    [33] M. Braun, J. Gmeiner, M. Tzolov, M. Coelle, F. D. Meyer, W. Milius, H. Hillebrecht, O. Wendland, J. U. von Schutz, and W. Brutting, J. Chem. Phys. 2001, 114, 9625.
    [34] M. Brinkmann, G. Gadret, M. Muccini, C. Taliant, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc. 2000, 122, 5147.
    [35] P. Addy, D. F. Evans, R. N. Sheppard, Inorg. Chim. Acta 1987, 127, L19.
    [36] L. S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G. T. Schmett, J. Marshall, D. Fogarty, P. E. Burrows, and S. R. Forrest, J. Am. Chem. Soc. 2001, 123, 6300.
    [37] K. Naito and A. Miura, J. Phys. Chem. 1993, 97, 6240.
    [38] K. A. Higginson, X. M. Zhang, and F. Papadimitrakopoulos, Chem. Mater. 1998, 10, 1017.
    [39] F. Papadimitrakopoulos, X. M. Zhang, D. L. Thomsen, III, and K. A. Higginson, Chem. Mater. 1996, 8, 1363.
    [40] C. P. Cho, C. A. Wu, and T. P. Perng, Adv. Fun. Mater. 2006, 16, 819.
    [41] C. P. Cho, Ph. D. thesis, National Tsing Hua University, 2006.
    [42] L. C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y, Ando, and S. Iijima, Nature 2000, 408, 50.
    [43] S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, and H. Shirai, Chem. Mater. 2000, 12, 1523.
    [44] P. Hoyer, Langmuir 1996, 12, 1411.
    [45] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 1998, 14, 3160.
    [46] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater. 1999, 11, 1307.
    [47] D. S. Seo, J. K. Lee, and H. Kim, J. Cryst. Growth 2001, 229, 428.
    [48] W. Wang, O. K. Varghese, M. Paulose, and C. A. Grimes, J. Mater. Res. 2004, 19, 417.
    [49] M. Lahav, T. Sehayek, A. Vaskevich, and I. Rubinstein, Angew. Chem. Int. Ed. 2003, 42, 5576.
    [50] M. Ohring, The Materials Science of Thin Films; Academic Press, 1991.
    [51] R. W. Vook, Int. Metals Rev. 1982, 27, 209.
    [52] R. M. German, Powder Metallurgy Science, Metal Powder Industries Federation, Princeton, NJ 1984

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE