簡易檢索 / 詳目顯示

研究生: 于杰立
Yu, Chieh-Li
論文名稱: 鎳鈷氫氧化物/氧化鋅奈米線/碳纖複合電極在超級電容器之應用
Porous NixCo1-x(OH)2 Nanosheets Coated on ZnO Nanowires Grown on Carbon Fiber for Supercapacitor Applications
指導教授: 黃金花
Huang, Jin-Hua
口試委員: 陳翰儀
羅一翔
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 91
中文關鍵詞: 超級電容鎳鈷氫氧化物氧化鋅奈米線
外文關鍵詞: Supercapacitor, nickel-cobalt hydroxide, ZnO nanowires
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米結構結合過渡金屬氧化物或氫氧化物所製成的奈米複合電極,擁有高功率密度、良好的能量密度及多次掃描電容值穩定性,被認為是一種非常好的超級電容型態。本研究利用氧化鋅奈米線做為活性材料的支架,在上面沉積鎳鈷氫氧化物,製作成奈米複合電極。首先利用化學浴沉積法將氧化鋅奈米線生長在碳纖維布上,接著利用脈衝電化學沉積法將鎳鈷氫氧化物沉積在氧化鋅奈米線表面,並對電化學的沉積參數及鎳鈷鍍液比例做系統的探討。最後由最佳參數所沉積出的鎳鈷氫氧化物/氧化鋅奈米線/碳纖複合電極,在10 mV/s的掃描速率下有880.5 F/g的比電容值。


    Transition-metal oxides or hydroxides on nanostructured supports have been regarded as promising electrode materials for high-performance supercapacitors due to their high power density, good energy density, excellent cycle stability, and long lifetime. In this work, a high-performance supercapacitor based on NixCo1-x(OH)2 nanoflakes modified ZnO nanowires (NWs) was developed. The ZnO NWs were synthesized on carbon fiber (CF) by chemical bath deposition, followed by pulse electrodeposition of NixCo1-x(OH)2 nanoflakes on the surface of ZnO NWs. The effects of the electrodeposition conditions along with the precursor variables were systematically investigated. The NixCo1-x(OH)2/ZnO NWs/CF hybrid nanostructure fabricated under the optimal conditions has exhibited a specific capacitance of 880.5 F/g, good rate capability, and cycling stability.

    摘要-----------------------I Abstract------------------II 致謝----------------------III 目錄----------------------IV 圖目錄--------------------VIII 表目錄--------------------XIV 第一章 緒論-----------------1 第二章 文獻回顧-------------3 第三章 實驗材料、設備與方法--24 第四章 結果與討論-----------32 第五章 結論----------------87 第六章 參考文獻-------------89

    1. Pandolfo, A.G. and A.F. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of Power Sources, 2006. 157(1): p. 11-27.
    2. Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15-16): p. 2483-2498.
    3. Lokhande, V.C., et al., Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. Journal of Alloys and Compounds, 2016. 682: p. 381-403.
    4. Hu, C.-C., C.-C. Wang, and K.-H. Chang, A comparison study of the capacitive behavior for sol–gel-derived and co-annealed ruthenium–tin oxide composites. Electrochimica Acta, 2007. 52(7): p. 2691-2700.
    5. Wikipedia. Pseudocapacitance. Available from: https://en.wikipedia.org/wiki/Pseudocapacitance.
    6. Conway, B.E., Electrochemical Supercapacitors. 1999, New York: Kluwer-Plenum Pub. Co.
    7. Zhang, Y., et al., Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, 2009. 34(11): p. 4889-4899.
    8. Wang, G., L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012. 41(2): p. 797-828.
    9. Hu, C.-C., J.-C. Chen, and K.-H. Chang, Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples. Journal of Power Sources, 2013. 221: p. 128-133.
    10. González, A., et al., Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016. 58: p. 1189-1206.
    11. Zheng, X., et al., High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping. J Colloid Interface Sci, 2016. 484: p. 155-161.
    12. Zhang, Q., et al., ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 2009. 21(41): p. 4087-4108.
    13. Wikipedia. Zinc oxide. Available from: https://en.wikipedia.org/wiki/Zinc_oxide.
    14. Yang, Q., et al., Rationally designed hierarchical MnO2-shell/ZnO-nanowire/carbon-fabric for high-performance supercapacitor electrodes. Journal of Power Sources, 2014. 272: p. 654-660.
    15. Li, G.-R., et al., ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry, 2011. 21(12).
    16. Cai, D., et al., High-performance supercapacitor electrode based on the unique ZnO@Co(3)O4(4) core/shell heterostructures on nickel foam. ACS Appl Mater Interfaces, 2014. 6(18): p. 15905-12.
    17. Xing, Z., et al., Ni3S2 coated ZnO array for high-performance supercapacitors. Journal of Power Sources, 2014. 245: p. 463-467.
    18. Lo, I.H., et al., Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors. Journal of Power Sources, 2016. 308: p. 29-36.
    19. 胡啟章, 電化學原理與方法. 初版 ed. 2002, 台北市: 五南.
    20. Pandey, R.K., S.N. Sahu, and S. Chandra, Handbook of semiconductor electrodeposition. 1996, New York: M. Dekker.
    21. 黃俊誠 and 陳藹然. Electroplating. 2009; Available from: http://highscope.ch.ntu.edu.tw/wordpress/?p=4911.
    22. 郭鶴桐, 基礎電化學及其測量. 2009: 化學工業出版社.
    23. Nomura, K., N. Shibata, and M. Maeda, Preparation of zinc oxide thin films by pulsed current electrolysis. Journal of the Electrochemical Society, 2002. 149(7): p. F76-F80.
    24. Bard, A.J. and L.R. Faulkner, Electrochemical methods : fundamentals and applications. 2nd ed. ed. 2001, New York: John Wiley.
    25. McPeak, K.M., et al., Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth. Langmuir, 2011. 27(7): p. 3672-7.
    26. Strano, V., et al., Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition. The Journal of Physical Chemistry C, 2014. 118(48): p. 28189-28195.
    27. Guillemin, S., et al., Formation Mechanisms of ZnO Nanowires: The Crucial Role of Crystal Orientation and Polarity. The Journal of Physical Chemistry C, 2013. 117(40): p. 20738-20745.
    28. Govender, K., et al., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem., 2004. 14(16): p. 2575-2591.
    29. Sun, Y., D.J. Riley, and M.N.R. Ashfold, Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. The Journal of Physical Chemistry B, 2006. 110: p. 15186-15192.
    30. Sugunan, A., et al., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 2006. 39(1): p. 49-56.
    31. Guo, M., P. Diao, and S. Cai, Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Applied Surface Science, 2005. 249(1-4): p. 71-75.
    32. Cheng, H.-M., et al., Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. The Journal of Physical Chemistry C, 2008. 112(42): p. 16359-16364.
    33. Tang, J., et al., Effect of Zn-substitution on cycling performance of α-Co(OH)2 nanosheet electrode for supercapacitors. Journal of Materials Chemistry A, 2014. 2(8).
    34. Chang, L., et al., Synthesis of Co(OH)2/Ni(OH)2 nanomaterials with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. Journal of Electroanalytical Chemistry, 2016. 778: p. 110-115.
    35. Lee, K.K., W.S. Chin, and C.H. Sow, Cobalt-based compounds and composites as electrode materials for high-performance electrochemical capacitors. J. Mater. Chem. A, 2014. 2(41): p. 17212-17248.
    36. Hu, C.C., et al., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters, 2006. 6(12): p. 2690-2695.
    37. Wanger, W.M.R.D., et al., Handbook of X Ray Potoelectron Spectroscopy. 1979, U.S.A: Perlin-Elmer Corp.
    38. Xu, T., et al., Room-temperature synthesis of sponge-like Co/Co(OH)2 nanocomposite for high-performance electrochemical Capacitors. Materials Letters, 2017. 186: p. 74-77.
    39. Zhang, Y., et al., Binary metal oxide: advanced energy storage materials in supercapacitors. Journal of Materials Chemistry A, 2015. 3(1): p. 43-59.
    40. Chen, J.-C., C.-T. Hsu, and C.-C. Hu, Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. Journal of Power Sources, 2014. 253: p. 205-213.
    41. Cheng, J.P., J. Zhang, and F. Liu, Recent development of metal hydroxides as electrode material of electrochemical capacitors. RSC Adv., 2014. 4(73): p. 38893-38917.

    QR CODE