簡易檢索 / 詳目顯示

研究生: 黃晧昌
Huang, Hao-Chang
論文名稱: 以PMIRRAS方法量測鋁合金樣品表面經處理後的水分子吸附
Water vapor adsorption on aluminum surface after different treatment processes by using the PMIRRAS method
指導教授: 陳俊榮
Chen, June-Rong
口試委員: 熊高鈺
Hsiung, Gao-Yu
薛心白
Hsueh, Hsin-Pai
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 83
中文關鍵詞: 鋁合金水分子吸附
外文關鍵詞: PMIRRAS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以調變偏振紅外光反射式吸收光譜儀系統為主,結合殘餘氣體分析儀量測樣品腔內水氣分壓,且可以烘烤和輝光放電方法清洗樣品,研究鋁合金樣品表面水分子的吸附。在水分子信號定量之校正實驗中,利用液態氮冷卻鋁合金樣品,以便黏滯係數近似於1,配合殘餘氣體分析儀測得水氣分壓,帶入氣體動力學公式,以估計吸附在樣品表面的水分子層數,估計出此系統之紅外光吸收訊號對水分子層數的校正因子約為12±50%。
    在本實驗中,也探討了4種不同處理方法(1)以酒精加工之原樣品(2)烘烤處理(3)氬氣輝光放電清洗(4)氦氣輝光放電清洗鋁合金表面吸附水分子數量之異同,結果顯示,鋁合金經過不同處理後,水氣吸附飽和層數有所差異,以酒精加工之原樣品的吸附飽和層數約為3.3層,烘烤處理約為3層,氬氣輝光放電約為1.5層,氦氣輝光放電約為1.2層,其誤差值約為50%。從XPS表面分析結果得知,發現樣品經過輝光放電後,表面含氧量下降,顯示表面含氧量較少時,在曝水時所吸收的水分子吸附層數也較少。


    第一章 前言 11 第二章 實驗原理 15 2.1水分子結構 15 2.2真空中分子吸附 15 2.3紅外光分析 16 2.3.1紅外光與水分子的共振 16 2.3.2偏振調變式紅外光反射吸收法 17 2.3.2.1 傅立葉轉換紅外光光譜 17 2.3.2.2偏振調變 18 2.4輝光放電清洗原理 19 2.5吸附層數計算 20 2.6誤差傳遞公式 23 第三章 實驗系統與實驗步驟 25 3.1實驗系統 25 3.1.1偏振調變紅外光反射式吸收分析系統 25 3.1.1.1傅立葉轉換紅外光光譜儀 25 3.1.1.2偏振光調變系統 26 3.1.2真空系統 26 3.1.3樣品載台 27 3.1.4曝氣管路 27 3.2實驗步驟 27 3.2.1 樣品製備 28 3.2.2水氣純化 28 3.2.3氣體純化 29 3.2.4水分子校正實驗 30 3.2.5水分子吸附實驗 31 3.2.5.1酒精加工樣品之水分子吸附實驗 31 3.2.5.2烘烤樣品之水分子吸附實驗 32 3.2.5.3輝光放電樣品之水分子吸附實驗 32 3.2.6 XPS深度剖析實驗 33 第四章 實驗結果與討論 35 4.1水分子校正實驗 35 4.2校正因子誤差分析 36 4.3水分子吸附實驗 37 4.3.1樣品在各處理的過程中水分子的吸附層數變化 37 4.3.2樣品經處理後水分子的吸附飽和層數 38 4.4 XPS深度剖析 39 第五章 結論 41 參考文獻 44

    1. F. Wilczek, “Did the Big Bang boil? ”, Nature 443, 637-638 (2006).
    2. Y. T. Liu, S. J. Chiu, S. Y. Chen and H. Y. Lee, “Preparation of BiFeO3/LaNiO3 Multiferroic Oxide Superlattice Structure by RF Sputtering”, Surf. Coat. Tech. 206, 1666-1672 (2011).
    3. B.-J. Chang, S. H. Lin, L.-J. Chou, and S.-Y. Chiang, "Subdiffraction scattered light imaging of gold nanoparticles using structured illumination", Optics Letters 36, 4773 (2011)
    4. D. J. Wang, J. R. Chen, G. Y. Hsiung, J. G. Shyy, J. R. Huang, S. N. Hsu, K. M. Hsiao, and Y. C. Liu, “Vacuum chamber for the wiggler of the Taiwan Light Source at the Synchrotron Radiation Research Center”, J. Vac. Sci. Technol. A 14(4) , 2624 (1996).
    5. 呂登復編,實用真空技術。黎明書局,新竹(1998).
    6. P. Danielson, “A Journal of Practical and Useful Vacuum Technology”, The Vacuum Lab, Ch.24, (2002).
    7. J. P. Hobson, “Fifty years of vacuum science”, J. Vac. Sci. Technology. A 21( 5), S7-S11(2003).
    8. J. F. O'Hanlon and J.J. Shieh, “Reduction of water aerosol contamination during pumping of a vacuum chamber from atmospheric pressure”, J. Vac. Sci. Technol. A 9 (5), 2802-2807 (1991).
    9. H. F. Dylla, D. M. Manos and P. M. LaMarche, “Correlation of outgassing of stainless and aluminum with various surface treatments”, J. Vac. Sci. Technol. A 11, 2623 (1993).
    10. 熊高鈺、詹哲鎧、張進春、陳慶隆、陳彥斌、許憲能、薛心白、陳俊榮,“同步加速器台灣光子元超高真空系統設計” 真空科技 21(3-4) , 12-19 (2008).
    11. 陳俊榮,“從台灣光子源建造談及加速器技術發展”,真空科技21(3-4) , 6-11 (2008).
    12. A. Berman, “Water vapor in vacuum systems”, Vacuum, 47 (4) (1996).
    13. N. C. Balchin, “The friction of clean metals immerse in liquid sodium”, Br. J. Appl. Phys.13, 564-569 (1962).
    14. M. Li, and H. F. Dylla, “Reduction of outgassing rate by glow discharge cleaning”, J. Vac. Sci. Technol. A 7, 2418(1989).
    15. T. Hino, Y. Yamauchi, S. Satoh, Y. Hirohata, A. Komori, N. Ashikawa, A. Sagara, N. Noda, N. Ohyabu, O. Motojima, “Retention and desorption of hydrogen and helium in stainless steel wall by glow discharge”, Fusion Engineering and Design,72(4) , 339-344 (2005).
    16. 莊立瑋,“分析鋁合金材料表面經水氣暴露及臭氧水處理之二次離子質譜分析”,碩士論文,國立清華大學原子科學系,(1998).
    17. 陳志敬,“鋁合金表面水釋氣之研究”,碩士論文,國立清華大學原子科學系,(2000).
    18. 葉家瑋,“建立紅外光分析系統以探討真空中水氣的現象”,碩士論文,國立清華大學原子科學系,(2007).
    19. 劉文峰,“利用紅外光光譜儀探討真空中水氣吸附現象”,碩士論文,國立清華大學生醫工程與環境科學系,(2008).
    20. 蘇宏銘,“以核反應法分析真空中水氣吸附之研究”,碩士論文,國立清華大學生醫工程與環境科學系,(2008).
    21. 賈立凱,“以紅外光光譜儀定量真空中鋁合金表面的水氣吸附” ,碩士論文,國立清華大學生醫工程與環境科學系,(2009).
    22. H.Cavendish, “Three Papers, Containing Experiments on Factitious Air, by the Hon. Henry Cavendish, F. R. S.”, Phil. Trans. 56, 141-184 (1766).
    23. John Dalton, “A New System of Chemical Philosophy”, Henderson & Spalding, London, (1808) pp29.
    24. Hans Lüth,“Solid Surfaces,interfaces and Thin Films ”, 4th edition Springer-Verlag, Germany (2001) pp 506.
    25. Z. Luo, Y. Fang and J.J. Yao, “A New Approach for Non-destructive Detection of Dye Molecules by Combination of Terahertz Time-domain Spectra and Raman Spectra”, Trends in Applied Sciences Research 2(4), 295-303 (2007).
    26. V. P. Tolstoy, I. V. Chernyshova, ”Handbook of infrared spectroscopy of ultrathin films”, John Wiley & Sons Inc, Canada, ( 2003) pp12.
    27. T. Buffeteau, B. Desbat and J.M. Turlet,“Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films :procedure and quantitative analysis”, Applied Spectroscopy 45, 380 (1991).
    28. A. A. Michelson,“Recent advances in spectroscopy”, Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam (1967).
    29. R.Corn, “Rapid-scan Polarization-modulated Fourier-transform Infra-red Reflection Absorption Spectroscopy”, Applications News for Users of Photoelastic Modulators, 1-4 (1996).
    30. D. E. Brown, S. M .George, C.Huang, E. K. L.Wong, K. B.Rider, R. S.Smith, B. D .Kay, “H2O Condensation Coefficient and Refractive Index for Vapor-Deposited Ice from Molecular Beam and Optical Interference Measurements”, J. Phys. Chem. 100, 4988-4995 (1996).
    31. Dylla, H. F. "Glow discharge techniques for conditioning high vacuum systems." J. Vac. Sci. Technol. A Vacuum, Surfaces, and Films 6.3 1276-1287 (1988).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE