研究生: |
王少傑 Wang, Shau-Chieh |
---|---|
論文名稱: |
銀奈米線的電遷移以及氧化鋅奈米線的完全置換現象之研究 Electromigration Behaviors of Ag Nanowires and Complete Replacement of ZnO Nanowires via Atomic Diffusion |
指導教授: |
陳力俊
Chen, Lih-Juann 張嘉升 Chang, Chia-Seng |
口試委員: |
陳力俊
張嘉升 鄭晃忠 果尚志 吳文偉 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 氧化鋅 、銀 、電遷移 、奈米線 、擴散 、完全置換 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
原子擴散是一個基本的現象並廣泛的應用在材料科學以及工程上。在臨場觀察超高真空穿透式電子顯微鏡上直接觀察原子擴散,能夠幫助了解各種基本的異質介面變化、相變化,以及各種不同的奈米結構的成長或遷移的現象。本論文主要以臨場觀察電子顯微鏡技術觀察有奈米微結構的銀奈米線之電遷移現及其電性量測,氧化銦中空奈米顆粒與氧化鋅異質結構的生成,以及氧化鋅奈米線被金屬銦完全取代置換的現象。
在第一組臨場觀察電子顯微術的研究中,觀察到了電遷移會受到雙晶界以及疊差的阻擋;第二組研究中則是得到了銦於氧化鋅奈米線中的擴散速率以及生成氧化銦中空奈米顆粒與氧化鋅奈米線的異質結構;第三組實驗中則是觀察到了取代置換現象與銦和氧化鋅間異質介面的關係。這些現象可由熱力學以及動力學的觀點來解釋。
這些結果顯示了利用具有奈米晶粒的銀奈米線以延長奈米元件壽命的可能,以及利用置換反應製造具有良好磊晶關係的金屬與金屬氧化物異質結構。利用置換反應製造金屬奈米線亦可利用來生產奈米元件。
Atomic diffusion is a fundamental process that dictates material science and engineering. Direct visualization of atomic diffusion process in in situ ultrahigh vacuum TEM could comprehend the fundamental information about interface dynamics, phase transitions, and different nanostructure growth/migration phenomenon. This thesis is comprised of the in situ TEM observations of the electronmigration and electrical properties of nanocrystal-modified Ag NWs, the formation of In2O3 hollow nanoparticles/ZnO heterostructure, and the complete replacement of ZnO nanowires by indium.
In situ TEM analyses reveal that electromigration in the twinned Ag NW could be inhibited at the boundaries of twin and stacking fault in the first study. The rate and activation energy of indium atoms diffusing into ZnO nanowires are measured in the second study. The third study demonstrates the replacement processes strongly depend and dominated by the interface dynamics between indium and ZnO. The processes are explained based on thermodynamic evaluation and growth kinetics.
These results present the potential possibilities to increase the lifetime of nanodevices by the nanocrystal-modified Ag NWs, and to completely replace metal-oxide semiconductor with metal nanowire without oxidation and form crystalline metal nanowire with precise epitaxial metal-semiconductor atomic interface. Formation of such single crystalline metal nanowire without oxidation by diffusion to the metal oxide is unique and it is crucial in nanodevice performances, rather challenging in manufacturing perspective in 1D nanodevices.
1. N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18, 1345-1360 (2006).
2. S. J. Tans, A. R. M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49-52 (1998).
3. R. Langer, N. A. Peppas, Advances in biomaterials, drug delivery, and bionanotechnology. Aiche Journal 49, 2990-3006 (2003).
4. Z. L. Wang, G. Zhu, Y. Yang, S. H. Wang, C. F. Pan, Progress in nanogenerators for portable electronics. Materials Today 15, 532-543 (2012).
5. M. P. Lu, M. Y. Lu, L. J. Chen, p-Type ZnO nanowires: From synthesis to nanoenergy. Nano Energy 1, 247-258 (2012).
6. S. C. Wang, Y. C. Chang, D. H. Lien, T. Hsu, C. S. Chang, Resonance frequency shift of a carbon nanotube with a silver nanoparticle adsorbed at various positions. Appl. Phys. Lett. 97, 133105 (2010).
7. Y. C. Chang, Y. H. Liaw, Y. S. Huang, T. Hsu, C. S. Chang, T. T. Tsong, In Situ Tailoring and Manipulation of Carbon Nanotubes. Small 4, 2195-2198 (2008).
8. R. P. Feynman, "There's plenty of room atthe bottom", Annual Meeting of the American Physical Society on December 29th at California Institute of Technology (1959).
9. N. Taniguchi, "On the basic concept of nano-technology," International Conference of Product Engineers, Tokyo, Japan (1974).
10. K. E. Drexler, "Engines of Creation: The Coming Era of Nanotechnology," AnchorPress, New York (1986).
11. C. Buzea, I. I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2, Mr17-Mr71 (2007).
12. A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933-937 (1996).
13. Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289-1292 (2001).
14. J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455-1457 (2001).
15. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66-69 (2001).
16. X. F. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Single-nanowire electrically driven lasers. Nature 421, 241-245 (2003).
17. S. Iijima, Helical Microtubules of Graphitic Carbon. Nature 354, 56-58 (1991).
18. P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513-1516 (1999).
19. X. D. Wang, C. J. Summers, Z. L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423-426 (2004).
20. R. S. Yang, Y. Ding, Z. L. Wang, Deformation-free single-crystal nanohelixes of polar nanowires. Nano Lett. 4, 1309-1312 (2004).
21. W. X. Guo, C. Xu, G. Zhu, C. F. Pan, C. J. Lin, Z. L. Wang, Optical-fiber/TiO2-nanowire-arrays hybrid structures with tubular counterelectrode for dye-sensitized solar cell. Nano Energy 1, 176-182 (2012).
22. A. K. Sood, Y. R. Puri, Z. L. Wang, D. L. Polla, M. B. Soprano, Growth of Highly Oriented ZnO Nanowires on GaN Substrates for Electronic and Optical Sensor Applications. J Nanosci. Nanotechno. 10, 1839-1841 (2010).
23. I. Mahboob, E. Flurin, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, Enhanced force sensitivity and noise squeezing in an electromechanical resonator coupled to a nanotransistor. Appl. Phys. Lett. 97, (2010).
24. C. A. E. Hauser, S. G. Zhang, NANOTECHNOLOGY Peptides as biological semiconductors. Nature 468, 516-517 (2010).
25. P. Artoni, E. F. Pecora, A. Irrera, F. Priolo, Kinetics of Si and Ge nanowires growth through electron beam evaporation. Nanoscale Res. Lett. 6, (2011).
26. A. Manekkathodi, M. Y. Lu, C. W. Wang, L. J. Chen, Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics. Adv. Mater. 22, 4059-4063 (2010).
27. E. G. Gamaly, T. W. Ebbesen, Mechanism of Carbon Nanotube Formation in the Arc-Discharge. Phys. Rev. B 52, 2083-2089 (1995).
28. D. H. Mun, S. J. Bak, J. S. Ha, H. J. Lee, J. K. Lee, S. H. Lee, Y. B. Moon, Effects of Precursor Concentration on the Properties of ZnO Nanowires Grown on (1-102) R-Plane Sapphire Substrates by Hydrothermal Synthesis. J Nanosci. Nanotech. 14, 5970-5975 (2014).
29. N. Tasaltin, S. Ozturk, N. Kilinc, H. Yuzer, Z. Z. Ozturk, Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte. Nanoscale Res. Lett. 5, 1137-1143 (2010).
30. Y. X. Lu, L. L. Xue, F. Li, Silver nanoparticle catalyst for electroless Ni deposition and the promotion of its adsorption onto PET substrate. Surf. Coat. Tech. 205, 519-524 (2010).
31. B. H. Jun, M. S. Noh, J. Kim, G. Kim, H. Kang, M. S. Kim, Y. T. Seo, J. Baek, J. H. Kim, J. Park, S. Kim, Y. K. Kim, T. Hyeon, M. H. Cho, D. H. Jeong, Y. S. Lee, Multifunctional Silver-Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications. Small 6, 119-125 (2010).
32. A. Rottler, M. Harland, M. Broll, M. Klingbeil, J. Ehlermann, S. Mendach, High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with a Silver-Coated Glass Fiber with a Varying Diameter. Phys. Rev. Lett. 111, 253901 (2013).
33. C. Y. Kao, C. L. Hsin, C. W. Huang, S. Y. Yu, C. W. Wang, P. H. Yeh, W. W. Wu, High-yield synthesis of ZnO nanowire arrays and their opto-electrical properties. Nanoscale 4, 1476-1480 (2012).
34. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897-1899 (2001).
35. Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys-Condens Mat. 16, R829-R858 (2004).
36. W. L. Hughes, Z. L. Wang, Formation of piezoelectric single-crystal nanorings and nanobows. J. Am. Chem. Soc. 126, 6703-6709 (2004).
37. J. H. He, S. T. Ho, T. B. Wu, L. J. Chen, Z. L. Wang, Electrical and photoelectrical performances of nano-photodiode based on ZnO nanowires. Chem. Phys. Lett. 435, 119-122 (2007).
38. X. D. Wang, C. Neff, E. Graugnard, Y. Ding, J. S. King, L. A. Pranger, R. Tannenbaum, Z. L. Wang, C. J. Summers, Photonic crystals fabricated using patterned nanorod arrays. Adv. Mater. 17, 2103-2106 (2005).
39. P. H. Yeh, Z. Li, Z. L. Wang, Schottky-Gated Probe-Free ZnO Nanowire Biosensor. Adv. Mater. 21, 4975-4978 (2009).
40. J. B. Han, F. R. Fan, C. Xu, S. S. Lin, M. Wei, X. Duan, Z. L. Wang, ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 21, (2010).
41. M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113-116 (2001).
42. S. C. Andrews, M. A. Fardy, M. C. Moore, S. Aloni, M. J. Zhang, V. Radmilovic, P. D. Yang, Atomic-level control of the thermoelectric properties in polytypoid nanowires. Chem. Sci. 2, 706-714 (2011).
43. S. Y. Bae, C. W. Na, J. H. Kang, J. Park, Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J.Phys. Chem. B 109, 2526-2531 (2005).
44. J. S. Jie, G. Z. Wang, X. H. Han, J. G. Hou, Synthesis and characterization of ZnO : In nanowires with superlattice structure. J. Phys. Chem. B 108, 17027-17031 (2004).
45. M. A. McCoy, R. W. Grimes, W. E. Lee, Planar intergrowth structures in the ZnO-In2O3 system. Philos. Mag. A 76, 1187-1201 (1997).
46. H. Schmid, E. Okunishi, T. Oikawa, W. Mader, Structural and elemental analysis of iron and indium doped zinc oxide by spectroscopic imaging in Cs-corrected STEM. Micron 43, 49-56 (2012).
47. C. T. Lewis, C. Short, E. A. Andrews, Thomas Leiper Kane Collection (Library of Congress. Hebraic Section), A Latin dictionary; founded on Andrews' edition of Freund's Latin dictionary. (Clarendon Press, Oxford, 1955).
48. K. C. Lu, W. W. Wu, H. W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen, K. N. Tu, In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 7, 2389-2394 (2007).
49. K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, K. N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066-1069 (2008).
50. Y. Chen, Y. C. Lin, C. W. Huang, C. W. Wang, L. J. Chen, W. W. Wu, Y. Huang, Kinetic Competition Model and Size-Dependent Phase Selection in 1-D Nanostructures. Nano Lett. 12, 3115-3120 (2012).
51. R. W. Balluffi, S. M. Allen, W. C. Carter, R. A. Kemper, Kinetics of materials. (J. Wiley & Sons, Hoboken, N.J., 2005).
52. K. Seo, N. Bagkar, S. I. Kim, J. In, H. Yoon, Y. Jo, B. Kim, Diffusion-Driven Crystal Structure Transformation: Synthesis of Heusler Alloy Fe3Si Nanowires. Nano Lett. 10, 3643-3647 (2010).
53. C. R. Chinake, R. H. Simoyi, Experimental studies of spatial patterns produced by diffusion-convection-reaction systems. J. Chem. Soc. Faraday T 93, 1345-1350 (1997).
54. N. Zhang, C. Q. Zhong, B. Xie, H. L. Liu, X. Z. Wang, TiO2/Bi A-SPAES(Ds 1.0) Composite Membranes for Proton Exchange Membrane in Direct Methanol Fuel Cell (DMFC). J. Nanosci. Nanotech. 14, 7286-7292 (2014).
55. R. S. Wagner, W. C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth ( New Method Growth Catalysis from Impurity Whisker Epitaxial + Large Crystals Si E ). Appl. Phys. Lett. 4, 89 (1964).
56. J. S. Tang, C. Y. Wang, M. H. Hung, X. W. Jiang, L. T. Chang, L. He, P. H. Liu, H. J. Yang, H. Y. Tuan, L. J. Chen, K. L. Wang, Ferromagnetic Germanide in Ge Nanowire Transistors for Spintronics Application. Acs Nano 6, 5710-5717 (2012).
57. A. Christou, Electromigration and electronic device degradation. (Wiley, New York, 1994).
58. J. R. Black, Electromigration - a Brief Survey and Some Recent Results. IEEE T Electron Dev. Ed16, 338-347 (1969).
59. I. A. Blech, Electromigration in Thin Aluminum Films on Titanium Nitride. J. Appl. Phys. 47, 1203-1208 (1976).
60. B. Liu, H. C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430-4431 (2003).
61. M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, L. J. Chen, Highly sensitive metal-insulator-semiconductor UV photodetectors based on ZnO/SiO2 core-shell nanowires. J. Mater. Chem. 22, 8420-8425 (2012).
62. V. C. Holmberg, M. G. Panthani, B. A. Korgel, Phase Transitions, Melting Dynamics, and Solid-State Diffusion in a Nano Test Tube. Science 326, 405-407 (2009).
63. S. Hofmann, R. Sharma, C. T. Wirth, F. Cervantes-Sodi, C. Ducati, T. Kasama, R. E. Dunin-Borkowski, J. Drucker, P. Bennett, J. Robertson, Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nat. Mater. 7, 372-375 (2008).
64. Y. C. Chou, W. W. Wu, S. L. Cheng, B. Y. Yoo, N. Myung, L. J. Chen, K. N. Tu, In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano COSi(2) in nanowires of Si. Nano Lett. 8, 2194-2199 (2008).
65. C.-L. Hsin, W.-F. Lee, C.-T. Huang, C.-W. Huang, W.-W. Wu, L.-J. Chen, Growth of CuInSe2 and In2Se3/CuInSe2 Nano-Heterostructures through Solid State Reactions. Nano Lett. 11, 4348-4351 (2011).
66. H. C. Hsu, W. W. Wu, H. F. Hsu, L. J. Chen, Growth of high-density titanium silicide nanowires in a single direction on a silicon surface. Nano Lett. 7, 885-889 (2007).
67. V. B. Fiks, On the Mechanism of the Mobility of Ions in Metals. Sov. Phys-Sol. State 1, 14-28 (1959).
68. B. J. Wiley, Z. H. Wang, J. Wei, Y. D. Yin, D. H. Cobden, Y. N. Xia, Synthesis and electrical characterization of silver nanobeams. Nano Lett. 6, 2273-2278 (2006).
69. X. H. Liu, J. Zhu, C. H. Jin, L. M. Peng, D. M. Tang, H. M. Cheng, In situ electrical measurements of polytypic silver nanowires. Nanotechnology 19, (2008).
70. R. W. Balluffi, S. M. Allen, W. C. Carter, Kinetics of Materials. (Wiley, United States of America, 2005).
71. G. R. Newns, J. M. Pelmore, Thermodynamics of Indium Oxide from Measurements of Electromotive Force. J. Chem. Soc. A, 360-362 (1968).
72. R. A. Swalin, Thermodynamics of solids. Wiley series on the science and technology of materials (J. Wiley, New York,, ed. 2d, 1972).
73. K. Lu, L. Lu, S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science 324, 349-352 (2009).
74. L. Lu, X. Chen, X. Huang, K. Lu, Revealing the Maximum Strength in Nanotwinned Copper. Science 323, 607-610 (2009).
75. Y. G. Sun, B. Gates, B. Mayers, Y. N. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165-168 (2002).
76. J. O. Zhao, H. Y. Sun, S. Dai, Y. Wang, J. Zhu, Electrical Breakdown of Nanowires. Nano Lett 11, 4647-4651 (2011).
77. Magnater.A, Structure Factor and Resistivity of Copper and Silver. Phys. Lett. A A 44, 63-64 (1973).
78. F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. J. Dong, Y. Ding, Z. L. Wang, C. M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701-706 (2008).
79. J. W. Hong, S. W. Kang, B. S. Choi, D. Kim, S. B. Lee, S. W. Han, Controlled Synthesis of Pd-Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for Oxygen Reduction. Acs Nano 6, 2410-2419 (2012).
80. M. Y. Lu, J. H. Song, M. P. Lu, C. Y. Lee, L. J. Chen, Z. L. Wang, ZnO-ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation. Acs Nano 3, 357-362 (2009).
81. J. Yang, J. U. Lind, W. C. Trogler, Synthesis of hollow silica and titania nanospheres. Chem. Mater. 20, 2875-2877 (2008).
82. C. Guan, X. H. Xia, N. Meng, Z. Y. Zeng, X. H. Cao, C. Soci, H. Zhang, H. J. Fan, Hollow core-shell nanostructure supercapacitor electrodes: gap matters. Energ. Environ. Sci. 5, 9085-9090 (2012).
83. H. S. Kim, H. G. Na, J. C. Yang, C. Lee, H. W. Kim, Synthesis, Structure, Photoluminescence, and Raman Spectrum of Indium Oxide Nanowires. Acta Phys. Polon. A 119, 143-145 (2011).
84. T. Moriga, D. D. Edwards, T. O. Mason, G. B. Palmer, K. R. Poeppelmeier, J. L. Schindler, C. R. Kannewurf, I. Nakabayashi, Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system. J. Am. Ceram. Soc. 81, 1310-1316 (1998).
85. C. L. Hsin, J. H. He, L. J. Chen, Modulation of photoemission spectra of In2O3 nanowires by the variation in Zn doping level. Appl. Phys. Lett. 88, (2006).
86. C. L. Hsin, S. Y. Yu, C. W. Huang, W. W. Wu, Formation of In2O3 nanorings on Si substrates. Appl. Phys. Lett. 97, 181920 (2010).
87. T. Nakagawa, K. Matsumoto, I. Sakaguchi, M. Uematsu, H. Haneda, N. Ohashi, Analysis of Indium Diffusion Profiles Based on the Fermi-Level Effect in Single-Crystal Zinc Oxide. Jpn J. Appl. Phys. 47, 7848-7850 (2008).
88. D. Banerjee, J. Y. Lao, D. Z. Wang, J. Y. Huang, D. Steeves, B. Kimball, Z. F. Ren, Synthesis and photoluminescence studies on ZnO nanowires. Nanotechnology 15, 404-409 (2004).
89. G. B. Chen, L. Wang, X. Sheng, H. J. Liu, X. D. Pi, Y. Y. Zhang, D. S. Li, D. R. Yang, Growth of In2O3 Nanowires Catalyzed by Cu via a Solid-Liquid-Solid Mechanism. Nanoscale Res. Lett. 5, 898-903 (2010).
90. C. Jin, H. Kim, S. Park, C. Lee, Synthesis of biaxial MgO/Mg-Sn-O nanowire heterostructures and their structural and luminescence properties. J. Alloys and Comp. 541, 163-167 (2012).
91. Y. Liao, S. K. Yang, K. Koh, A. J. Matzger, J. S. Biteen, Heterogeneous Single-Molecule Diffusion in One-, Two-, and Three-Dimensional Microporous Coordination Polymers: Directional, Trapped, and Immobile Guests. Nano Lett. 12, 3080-3085 (2012).
92. D. A. Porter, K. E. Easterling, Phase transformations in metals and alloys. (Chapman & Hall, New York, ed. 2nd, 1992).
93. R. W. Balluffi, S. M. Allen, W. C. Carter, R. A. Kemper, Kinetics of materials. (J. Wiley & Sons, Hoboken, N.J., 2005).
94. K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, S. Rahong, G. Meng, M. Horprathum, B. Xu, F. Zhuge, Y. He, B. H. Park, T. Kawai, Prominent Thermodynamical Interaction with Surroundings on Nanoscale Memristive Switching of Metal Oxides. Nano Lett. 12, 5684-5690 (2012).
95. Z. Zhang, S. J. Wang, T. Yu, T. Wu, Controlling the growth mechanism of ZnO nanowires by selecting catalysts. J. Phys. Chem. C 111, 17500-17505 (2007).
96. D. H. Kuo, J. Y. He, Micromechanism and Kinetic Formulation of Vertically Aligned ZnO Nanorods Grown on Catalytic Bilayers. J. Nanomater. (2012).
97. R. E. Honig, Vapor Pressure Data for the Solid and Liquid Elements. Rca Rev. 23, 567-586 (1962).
98. B. J. Lee, Thermodynamic assessments of the Sn-Zn and In-Zn binary systems. Calphad 20, 471-480 (1996).
99. H. Okamoto, In-O (Indium-Oxygen). J. Phase Equilib. Diff. 28, 591-592 (2007).
100. D. B. Williams, C. B. Carter, Transmission electron microscopy : a textbook for materials science. (Springer, New York, ed. 2nd, 2008).
101. V. J. Norman, Diffusion of Aluminium and Gallium in Zinc Oxide. Aust. J. Chem. 22, 325-329 (1969).
102. B. M. Hudak, Y. J. Chang, L. Yu, G. h. Li, D. N. Edwards, and B. S. Guiton, ACS Nano 8, 5441-5448 (2014).
103. N. Cathcart, A. J. Frank, V. Kitaev, Silver nanoparticles with planar twinned defects: effect of halides for precise tuning of plasmon resonance maxima from 400 to > 900 nm. Chem Commun, 7170-7172 (2009)