簡易檢索 / 詳目顯示

研究生: 吳立偉
論文名稱: FePdIn鐵磁性形狀記憶合金之研究
指導教授: 胡塵滌
Chen-Ti Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 102
中文關鍵詞: FePdIn鐵磁性形狀記憶合金
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的形狀記憶合金可以透過升降溫來改變其形狀,其缺點為升降溫的速率及熱傳受到限制;鐵磁性形狀記憶合金具有形狀記憶效應及巨磁伸縮特性,反應速度較傳統形狀記憶合金快,可在高頻下應用,鐵鈀合金相較於其他鐵磁性形狀記憶合金,同時兼具高相變化溫度、高延展性及高磁伸縮值,但在實際應用上仍需以提高相變化溫度且抑制非熱彈性bct相生成。本實驗主要是以In取代鐵鈀合金系統中的Pd元素,來探討其相變化溫度及抑制bct相生成的差異。研究中發現添加第三元素In對鐵鈀合金系統相變化溫度提升,但卻使磁伸縮下降。本實驗也將添加各種不同第三元素對相變化溫度作整理,以利於鐵磁性形狀記憶合金在高頻的應用。


    緒論與文獻回顧 1-1 前言………………………………………………………………1 1-2 鐵磁性形狀記憶合金導論………………………………………2 1-2-1 形狀記憶效應………………………………………….3 1-2-2 磁伸縮………………………………………………….5 1-2-3 鐵磁性形狀記憶效應………………………………….6 1-2-4 鐵磁形狀記憶合金的應用……………………………9 1-3 鐵鈀形狀記憶合金文獻回顧……………………………………10 1-3-1 鐵鈀製成文獻回顧……………………………………10 1-3-2 鐵鈀形狀記憶合金相變化文獻回顧…………………11 1-3-3 形狀記憶效應…………………………………………14 1-3-4 磁性質與磁伸縮(鐵磁形狀記憶效應) ………………16 1-3-5 添加第三類元素的文獻回顧…………………………18 1-4 研究目的 ………………………………………………………19 第二章 實驗步驟及方法……………………………………………36 2-1 合金鑄錠準備 …………………………………………………36 2-2 快速凝固旋淬法(melt-spinning)………………………………37 2-3 成分分析 ………………………………………………………37 2-4 結構分析及觀察 ………………………………………………38 2-4-1 室溫X-ray繞射分析…………………………………38 2-4-2 變溫X-ray繞射分析…………………………………38 2-4-3 OM顯微結構觀察……………………………………39 2-5 磁性質量測 ……………………………………………………39 2-6 磁伸縮量測 ……………………………………………………40 2-7 形狀記憶效應測試 ……………………………………………40 2-8 形狀記憶效應(SME)量測分析 ………………………………41 2-9 儀器與測量原理 ………………………………………………42 2-9-1 應變規 ………………………………………………42 2-9-2 振動樣品磁量儀(VSM) ……………………………44 第三章 結果與討論…………………………………………………52 3-1 各試片代號簡介 ………………………………………………52 3-2 試片基本性質研究 ……………………………………………52 3-2-1 ICP-AES 成分定量分析………………………………52 3-2-2 室溫薄帶X-ray繞射 …………………………………53 3-2-3 OM微結構觀察 ………………………………………55 3-2-4 磁性質量測……………………………………………56 3-3 相變化溫度研究 ………………………………………………59 3-3-1 變溫X-ray繞射分析 …………………………………59 3-3-2 添加第三元素對相變化溫度整理……………………60 3-3-3 SQUID相變化溫度量測研究…………………………62 3-4 磁伸縮研究 ……………………………………………………64 3-5 形狀記憶效應之研究 …………………………………………65 3-6 FePdIn薄帶試片與文獻[65]之比較研究………………………67 第四章 結論…………………………………………………………91 第五章 參考文獻……………………………………………………92 表 目 錄 表1-1 常見鐵磁性形狀記憶合金性質之比較……………………21 表3-1 試片代號……………………………………………………69 表3-2 ICP-AES結果列表…………………………………………70 表3-3 As-Af Ms-Mf相變化溫度結果……………………………70 圖 目 錄 圖1-1 形狀記憶合金之形狀記憶效應示意圖………………………22 圖1-2 CuAlNi 合金熱彈性型麻田散體經冷卻、加熱所致的成長、 收縮之光學顯微鏡照片………………………………………23 圖1-3 記憶方式之示意圖……………………………………………23 圖1-4 磁伸縮現象的物理起源示意圖………………………………24 圖1-5 磁化機制與磁伸縮的示意圖…………………………………25 圖1-6 三種不同狀態下之磁伸縮關係………………………………26 圖1-7 磁晶體異相性能影響磁偶矩反轉示意圖……………………26 圖1-8 鐵磁形狀記憶效應示意圖(H1<H2) …………………………27 圖1-9 傳統磁伸縮效應與鐵磁形狀記憶效應的比較………………27 圖1-10 滾壓試片和薄帶試片之比較(a)熱滾壓試片(b)薄帶試片 …28 圖1-11 Fe-Pd 合金淬火後的相圖……………………………………28 圖1-12 Fe-Pd合金晶格常數與溫度的關係 …………………………29 圖1-13 光學顯微鏡觀察Fe-Pd合金的FCT麻田散體相……………29 圖1-14 穿透式電子顯微鏡觀察Fe-Pd合金FCT麻田散體相的內部雙 晶結構…………………………………………………………30 圖1-15 晶格變形後對應的三種不同方位的兄弟晶…………………30 圖1-16 Fe-Pd合金的麻田散體結構示意圖 …………………………31 圖1-17 BCT麻田散體出現於FCT麻田散體的微結構………………31 圖1-18 快速凝固法製成示意圖………………………………………32 圖1-19 Fe-29.6at.%Pd合金形狀記憶效應隨溫度的變化……………32 圖1-20 Fe-Pd單晶在不同方向的磁化曲線 …………………………33 圖1-21 Fe-30.5%Pd在2℃(a)無外加磁場下有麻田散相(b)外加 8x105A/m(1T)磁場後有些麻田散相消失……………………33 圖1-22 磁晶體異相性(MCA)隨著改變Fe70Pd30-xPtx中x的量有關 34 圖1-23 Pd-In-Fe三元相圖……………………………………………34 圖1-24 Pd56.2In26.3Fe17.5用SQUID量測(a)熱磁化曲線(b)磁滯曲線…34 圖1-25 單晶PdInFe17.8(a)壓縮應力-應變圖(b)三點彎曲表面應力-應變圖(c)拉伸應力方向(d)壓縮應力方向……………………35 圖2-1 實驗流程簡介…………………………………………………46 圖2-2 真空電弧熔煉系統裝置示意圖………………………………47 圖2-3 單輪熔液旋淬裝置分布圖……………………………………47 圖2-4 低溫XRD分析用冷卻示意圖 ………………………………48 圖2-5 形狀記憶效應量測方法示意圖………………………………48 圖2-6 金屬導線受拉力後彈性應變圖………………………………49 圖2-7 應變規主要構造圖……………………………………………49 圖2-8 惠斯登電橋電路示意圖………………………………………49 圖2-9 應變規連接電橋盒之電路示意………………………………50 圖2-10 VSM示意圖……………………………………………………51 圖3-2-1 In0.25 室溫X-ray繞射圖……………………………………71 圖3-2-2 In0.5 室溫X-ray繞射圖…………………………………….71 圖3-2-3 In0.75 室溫X-ray繞射圖……………………………………72 圖3-2-4 In1 室溫X-ray繞射圖……………………………………72 圖3-2-5 In1.5 室溫X-ray繞射圖……………………………………73 圖3-2-6 In3 室溫X-ray繞射圖……………………………………73 圖3-2-7 FeIn1 室溫X-ray繞射圖……………………………………74 圖3-2-8 In0.25 之橫截面金相圖 ……………………………………75 圖3-2-9 In0.5 之橫截面金相圖 ……………………………………75 圖3-2-10 In0.75 之橫截面金相圖 ……………………………………75 圖3-2-11 In1 之橫截面金相圖 ……………………………………76 圖3-2-12 In1.5 之橫截面金相圖 ……………………………………76 圖3-2-13 In3 之橫截面金相圖 ……………………………………76 圖3-2-14 FePdIn 薄帶試片(In < 1%)室溫磁滯曲線…………………77 圖3-2-15 FePdIn 薄帶試片(In < 1%)室溫磁滯曲線放大圖…………77 圖3-2-16 FePdIn 薄帶試片(In > 1%)室溫磁滯曲線…………………78 圖3-2-17 FePdIn 薄帶試片(In > 1%)室溫磁滯曲線放大圖…………78 圖3-2-18 FeIn1 薄帶試片室溫磁滯曲線 ……………………………79 圖3-2-19 FeIn1 薄帶試片室溫磁滯曲線放大圖 ……………………79 圖3-3-1 In0.25 薄帶試片角度對溫度的關係圖………………………80 圖3-3-2 In0.5 薄帶試片角度對溫度的關係圖………………………80 圖3-3-3 In0.75 薄帶試片角度對溫度的關係圖………………………81 圖3-3-4 In1 薄帶試片角度對溫度的關係圖………………………81 圖3-3-5 FeIn1 薄帶試片角度對溫度的關係圖………………………82 圖3-3-6 In0.25薄帶試片變溫X-ray繞射圖(高於室溫) …………83 圖3-3-7 In0.25薄帶試片變溫X-ray繞射圖(低於室溫) …………83 圖3-3-8 In0.5薄帶試片變溫X-ray繞射圖(高於室溫) ……………84 圖3-3-9 In0.5薄帶試片變溫X-ray繞射圖(高於室溫) ……………84 圖3-3-10 In0.75薄帶試片變溫X-ray繞射圖………………………85 圖3-3-11 FePdIn薄帶試片SQUID量測結果…………………………85 圖3-3-12 Af溫度對價電子濃度關係圖………………………………86 圖3-4-1 FePdIn薄帶試片室溫平均飽和磁伸縮比較圖………………87 圖3-4-2 FeIn1薄帶試片室溫平均飽和磁伸縮比較圖 ………………87 圖3-5-1 In1薄帶試片自發雙向形狀記憶效應示意圖(a)233K(b)413K 圖3-5-2 In1 薄帶試片一次拘束雙向形狀記憶效應(a)233K-1st thermal cycle(b)413K-1st thermal cycle(c)233K-5th thermal cycle(d)413K-5th thermal cycle ……………………………89 圖3-5-3 FePdIn 薄帶試片雙向形狀記憶效應回復率比較圖………90 圖3-5-4 FeIn1 薄帶試片雙向形狀記憶效應回復率比較圖………90

    [1] C.M. Wayman, “Some Applications of Shape-memory Alloys”, Journal of Metals, 32, (1980) ,p.p.129-137
    [2] K. Otsuka and K. Shimuzu, “Development of Shape Memory Alloys” ,ISIJ International. Rev., 29 (1989), p.p.353-377
    [3] L. M Schetky, “Shape memory alloys”, Scientific American, 241 (1979), p.p74-82.
    [4] K. Ullakko, J. K. Huang, C. Kantner, C. O’Handley and V. V. Kokorin. “Large magnetic-field-induced strain in Ni2MnGa single crystals’’ ,Appl. Phys. Lett., 69, (1996), 1966-1968
    [5] K. Oikawa, T. Ota, Y. Sutou, T. Ohmori, R. Kainuma and K. Ishida, “Magnetic and martensitic phase transformation in a Ni54Ga27Fe19 alloy’’, Mater. Trans., 43, (2002), 2360-2362.
    [6] K. Oikawa, T. Ota, F. Gejima, T. Ohmori. R. Ka inuma and K. Ishida, “Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloy of Co-Ni-Ga and Co-Ni-Al systems’’, Mater. Trans., 42, (2001), 2472-2475.
    [7] M. Wuttig, J. Li and C. Craciunescu, “A new ferromagnetic shape memory alloy system’’, Scr. Mater., 44, (2001), 2393-2397.
    [8] K. Oikawa, L. Wulff, T. Iijima, G. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma and K. Ishida, “Promising ferromagnetic Ni-Co-Al shape memory alloy system’’, Appl. Phys. Lett., 79, (2001), 3290-3292
    [9] T. kakeshita, T. Takeuchi, T. Fukuda, T. Saburi, R. Oshima, S. Muto and K. Kishio, “Magnetic field-induced martensitic transformation and giant magnetostriction in Fe-Ni-Co-Ti and ordered Fe3Pt shape memory alloys’’, Mater. Trans., JIM, 41 (2000), 882-887.
    [10] J. Koeda, Y. Nakamura, T. Fukuda, T.Kakeshita, T. Takeuchi and K. Kishio, “Magnetization Process Accosicated With Rearrangement of Martensit Variants in Iron-Based Ferromagnetic Shpae Memory Alloys ”, Trans. Mater. Res. Soc. Japan, 26 (2001), 215-217.
    [11] C. T. Hu, T. Goryczka and D. Vokoun “Effect of the spinning wheel velocity on the microstructure of Fe-Pd shape memory melt-spun ribbons’’, Scr.Mater., 50 (2004), 539-42
    [12] L. Delaet, R. V. Krishnan, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effect Associated with Martensitic Transformations. 1. Structural and Microstructural Changes Associated with Transformations’’, J. Mater. Sci., 9 (1974), 1521-1535.
    [13] R. V. Krishnan, L. Delaet, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effect Associated with Martensitic Transformations. 2. Macroscopic Mechanical-Behavior’’, J. Mater. Sci., 9 (1974), 1536.
    [14] H. Warlimont, L. Delaet, R. V. Krishnan and H. Tas, “Thermoelasticity, Pseudoelasticity and Memory Effect Associated with Martensitic Transformations. 3. Thermodynamics and Kinetics’’, J. Mater. Sci., 9 (1974), 1545-1555.
    [15] T. Tadaki, K. Otsuka and K. Shimizu, “Shape Memory Alloys”, Ann. Rev. Mater. Sci., 18 (1988), 25.
    [16] D. P. Dumme and C. M. Wayman, “Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2. Crystallography and General Features”, Met. Trans., 4 (1973), 147.
    [17] T. A. Schroder and C. M. Wayman, “2-way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals”, Scripta Met., 11 (1977), 225.
    [18] D. Gignoux, M. Schlenker et al., “Magnetism Ⅰ Fundamantals”, chapter 12, (2002).
    [19] D. Vokoun, Y. W. Wang, T. Goryczka and C. T. Hu, “Magnetostrictive and shape memory properties of Fe-Pd alloy with Co and Pt additions’’, Smart Mater. Struct., 14 (2005), S261-S265
    [20] J. Cui, T. W. Shield and R. D. James, “Phase Transformation and Magnetic Anisotropy of An Iron-Palladium Ferrpmagnetic Shape-Memory Alloy”, Acta Mater., 52 (2004), 35.
    [21] K. Ullakko, J.K. Huang, V.V. Kokorin and R.C. O’Handley, “Magnetically Controlled Shape Memory Effect in Ni2MnGa Intermetallics”, Scripta Mater., 36 (1997), 1133.
    [22] K. Ullakko, “Magnetically Controlled Shape Memory Alloys:A New Class of Actuator Materials ”, J. Mat. Eng. Per., 5 (1996), 405.
    [23] 金重勳等人,“磁性技術手冊”,第31章 (2002).
    [24] K. Tanaka, T. Ichitsubo and M. Koiwa, “Effect of External Fields on Ordering of FePd”, Mat. Sci. Eng., A 312 (2001), 118.
    [25] P. R. Aitchison, J. N. Chapman, V. Gehanno, I.S. Weir, M.R. Scheinfein, S. McVitie and A. Marty, “High Resolution Measurement and Modeling of Magnetic Domain Structure in Epitaxial FePd (001) L10 Films With Perpendicular magnetisation”, J. Magn. Magn. Mater. 223 (2001), 138.
    [26] T. Mohri, T. Horiuchi, H. Uzawa, M. Ibaragi, M. Igarashi and F. Abe, “Theoretical Investigation of L10-Disorder Phase Equilibria in Fe-Pd Alloy System”, J. Alloy. Com., 317-318 (2001), 13.
    [27] L. S. Wang, Z. Fan and D.E. Laughlin, “Trace Analysis For Magnetic Domain Images of L10 Polytwinned Structures”, Scripta Mater., 47 (2002), 78.
    [28] T. Kakeshita and K. Ullakko. “Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys”, Mrs bulletin, 27 (2002), 105-109.
    [29] Y. Furuya, N. W. Hagood, H. Kimura, T. Watanabe. “Shape Memory Effect and Magnetostriction in Rapidly Solidified Fe-29.6at%Pd Alloy”, 39 (1998), 12.
    [30] Y. W. Wang, “Fe-Pd鐵磁性形狀記憶合金添加第三元素之研究”,碩士論文,清華大學, 2004
    [31] M. Sugiyama, R.Oshima and F.E. Fujita, “Martensitic-Transformation in the Fe-Pd Alloy System”, Trans. JIM, 25 (1984), 585
    [32] R. Hultgren and C.A. Zapffe, Nature, 142 (1938), 395
    [33] T. Sohmura, R. Oshima and F.E. Fujita, “Thermoelastic FCC-FCT Martensitic-Transformation in Fe-Pd Alloy”, Scripta Mater., 14 (1980), 855
    [34] R. Oshima, “Successive Martensitic Transformations in Fe-Pd Alloys”, Scripta Mater., 15 (1981), 829
    [35] M. Sugiyama, R.Oshima and F.E. Fujita, “Mechanism of FCC-FCT Thermoelastic Martensitic-Transformation in Fe-Pd Alloys”, Trans. JIM, 27 (1986), 719
    [36] H. Kato, Y. Liang and M. Taya, “Stress-induced FCC/FCT Phase Transformation in Fe-Pd Alloy”, Scripta Mater., 46 (2002), 471-475
    [37] J.J. Felten, T.J. Kinkus, A.C.E. Reid, J.B. Cohen, and G.B. Olson, “Solid-Solution Structure and the Weakly First-Order Displacive Transformation in Fe-Pd Alloy”, Metal. Mater. Trans., A 28 (1997), 527
    [38] J. Cui and R.D. James, “Study of Fe3Pd and Related Alloy for Ferromagnetic Shape Memory”, IEEE Trans. Mag., 37 (2001), 2675-2677
    [39] H. Kato, T. Wada, Y. Liang, T. Tagawa, M. Taya and T. Mori, “Martensite Structure in Polycrystalline Fe-Pd”, Mater. Sci. Eng., A 332 (2002), 134-139
    [40] Y. Liang, T. Wada, H. Kato, T. Tagawa, M. Taya and T. Mori, “Straining of a polycrystal of Fe-Pd with martensite structure by uniaxial loading”, Mater. Sci. Eng., A 338 (2002), 89-96
    [41] M. Matsui, T. Shimizu, H. Yamada snd K.Adachi, J. Magn. “Magmetic-Properties and Thermal-Expansion of Fe-Pd Invar-Alloys”, Magn. Mat., 15-18 (1980), 1201-1202
    [42] T. Kubota, T. Okazaki, H. Kimura, T. Watanbe, M. Wutting and Y. Furuya, “Effect of Rapid Solidification on Giant Magnetostriction in Ferrpmagnetic Shape Memory Iron-based Alloys”, Sci. Tech. Adv. Mat., 2 (2002), 201-207
    [43] S. Inoue, K. Inoue, K. Koterazawa and K. Mizuuchi, “Shape Memory Behavior of Fe-Pd Alloy Thin Film Prepared by DC Magnetron Sputtering”, Mat. Sci. Eng., A 339 (2003), 29-34
    [44] S. Inoue, K. Inoue, S. Fujita and K. Koterazawa, “Fe-Pd Ferromagnetic Shape Memory Alloy Thin Films Made by Dual Source DC Magnetron Sputtering”, Mat. Tran., 44 (2003), 298-304
    [45] D. Vokoun and C.T. Hu, “Two-way shape memory effect in Fe-28.8 at.% Pd melt-spun ribbons’’, Scripta. Mater., 47 (2002), 453-457
    [46] D. Vokoun and C.T. Hu, “Improvement of shape memory characteristics in Fe-Pd melt-spun shape memory ribbons’’, J. All. Com., 346 (2002), 147-153
    [47] R.D. James and M. Wuttig, “Magnetostriction of Martensite”, Philosophical Magazine, A 77 (1998), 1273-1299
    [48] J. Koeda, Y. Nakamura, T. Gukuda, T. Kakeshita, T. Takeuchi and K. Kishio, “Magnetization Process Accosicated With Rearrangement of Martensit Variants in Iron-Based Ferromagnetic Shpae Memory Alloys”, Trans. Mat. Res. Soc. Jap., 26 (2001), 215
    [49] J. Cui and R.D. James, “Study of Fe3Pd and Related Alloys for Ferromagnetic Shape Memory”, IEEE Trans. Mag., 37 (2001), 2675-2677
    [50] T. Kakeshita and K. Ullakko, “Giant Manetostriction in Ferromagnetic Shape-Memory Alloys”, MRS Bullentin, 27 (2002), 105-109
    [51] T. Kubota, T. Okazaki, Y. Furuya and T. Watanabe, J. Mag. “Large Magnetostriction in Rapid-Solidified Ferromagnetic Shape-Memory Fe-Pd Alloy”, Mag. Mat., 239 (2002), 551-553
    [52] H.Y. Yasuda, N. Komoto, M. Ueda and Y. Umakoshi, “Microstructure Control for Developing Fe-Pd Ferromagnetic Shape Memory Alloys”, Sci. Tech. Adv. Mat., 3 (2002), 165-169
    [53] T. Okazaki, H. Nakajima and Y. Furuya, “Large Magnetostriction of Fe-29.6at%Pd Alloy Ribbon Under Tensile Stress”, Mat. Trans., 44 (2003), 665-668
    [54] Y. Liang, Y. Sutou, T. Wada, C. C. Lee, M. Taya, T. Mori., “Magnetic Field-induced Reversible Actuation Using Ferromagnetic Shape Memory Alloys”, Scripta Materialia, 48 (2003), 1415-1419.
    [55] R.A. Stern, S.D. Willoughby, A. Ramirez J.M. MacLaren, J. Cui, Q. Pan and R.D. James, “Electronic and Structural Properties of Fe3Pd-Pt Ferromagnetic Shape Memory Alloys”, J. App. Phy., 91 (2002), 7818-7820
    [56] T. Wada, T. Tagawa and M. Taya, “Martensitic Transformation in Pd-rich Fe-Pd-Pt Alloy”, Scripta Mater., 48 (2003), 207-211
    [57] K. Tsuchiya, T. Nojiri, H. Ohtsuka and M. Umemoto, “Reversible and irreversible martensitic transformations in Fe-Pd and Fe-Pd-Co alloys’’ Mat. Trans., 44 (2003), 2499
    [58] 施志超, “RT2材料的磁伸縮與磁性研究” 2002 chap2
    [59] http://osdlab.eic.nctu.edu.tw/oslab/device/vsm.htm
    [60] M. Matsui, T. Shimizu, H. Yamada snd K.Adachi, “ A New Low-Temperature Phase (FCT) of Fe-Pd Invar”, Journal of the Physical Society of Japan, 48 (1980), 2161-2162
    [61] 余俊彥, “FePdPt,FePdAu鐵磁性形狀記憶合金磁性質及形狀記憶效應研究”,碩士論文,清華大學, 2005
    [62] T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya and T. Mori, “Structural Change and Straining in Fe-Pd Polycrystals by Magnetic Field”, Material Science and Engeneering, A 361 (2003), 75-82
    [63] 吳韋民, “鐵磁性記憶合金FePdAg與FePdAu物理特性與形狀記憶效應研究”,碩士論文,清華大學, 2006
    [64] 蔡豐鍵, “FePdSn,FePdCu 鐵磁性形狀記憶合金性質與形狀記憶效應研究”,碩士論文,清華大學, 2007
    [65] H. Ishikawa, Y. Sutou, T. Omori, K. Oikawa, and K. Ishida, A. Yoshikawa, R. Y. Umetsu, and R. Kainuma, “ Pd–In–Fe shape memory alloy’’, Applied Physics Letters, 90, 261906 (2007)
    [66] H. S. Kim, K. H. Lee, M. C. Shin, S. Y. Kim, and M. Hyung, “A
    composite model for mechanical properties of nanocrystalline materials”, Scr. Mater., 38, 1549 (1998).
    [67] H. S. Kim, M. H. Dzo, K. H. Lee, and M. C. Shin, “The corrosion
    and tarnish behavior of new palladium-indium system alloys”, J. Mater. Sci., 35, 4989 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE