研究生: |
莊瑞焜 Chuang Jui-Kun |
---|---|
論文名稱: |
單次衰竭運動引發老鼠不同恢復期之氧化損傷反應 The Responses of Oxidative Damage on Different Recovery Induced by a Single Bout of Exhaustive Exercise in Rats |
指導教授: |
謝錦城
Hsieh Chin-Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 衰竭運動 、氧化損傷 、脂質過氧化作用 、抗氧化能力 |
外文關鍵詞: | exhaustive exercise, oxidative damage, lipid peroxidation, antioxidative capability |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討單次衰竭運動後老鼠體內血液脂質過氧化、組織損傷、抗氧化調節能力等指標於0.5 h、1 h、2 h、24 h等不同恢復期之反應。40隻Sprague-Dawley雄鼠隨機分為控制組 (C = 8) 與衰竭運動組,其中衰竭運動組依犧牲時間均分為運動後0.5 h組 (E0.5h = 8) 、1 h組 ( E1h = 8) 、2 h組 (E2h = 8) 與24 h組 (E24h = 8) 共四組。讓衰竭運動組老鼠在跑步機上跑至衰竭。得到最後速度約30.4 ± 0.6 m/min,平均持續時間約64.5 ± 2.9 min。衰竭運動後依分組時間犧牲與收集血液,分析其血漿丙二醛 (malondialdehyde, MDA) 濃度與肌酸激酶 (creatine kinase, CK) 、乳酸脫氫酶 (lactate dehydrogenase, LDH) 活性等;以及紅血球麩胱甘肽 (glutathione, GSH) 、氧化態麩胱甘肽 (glutathione disulfide, GSSG) 濃度與超氧化物歧化酶 (superoxide dismutase, SOD) 活性等反應情形。經單因子變異數分析後,達顯著差異者再以杜凱氏法將各時間點與C組進行事後比較,結果如下。
一、MDA分別於E0.5h 與E1h增加10%與14.5% (p < .05) ,CK活性分別於E0.5h與E2h顯著增加99.3%與151.3%的峰值反應 (p < .05) ,LDH則僅在E2h顯著增加49.8%的峰值結果 (p < .05) 。
二、紅血球GSH與SOD於運動後各組與C組比較結果並無明顯改變 (p > .05) ;但GSSG直到E1h才明顯增加36.9% (p < .05) ,期間GSH/GSSG比值下降。
本研究老鼠於E0.5h至E1h 期間血漿MDA濃度與CK活性在E0.5h以及紅血球GSSG濃度在E1h明顯升高的結果,意味著老鼠因衰竭運動導致體內骨骼肌與心肌等組織細胞的脂質過氧化傷害將持續約1小時,期間氧化壓力亦干擾紅血球內GSH與GSSG的平衡狀態,並於運動後2 h恢復至安靜值;然而血漿CK與LDH活性在E2h的明顯升高反應,有可能受到了免疫分子誘發續發性發炎受損之影響所致。需要進一步擴大相關氧化、抗氧化分子的檢測,以清楚釐清老鼠歷經單次衰竭運動後恢復期,體內血液系統複雜的氧化調節機制。
The purpose of this study was to investigate the changes of blood biochemical marks include malondialdehyde (MDA) , creatine kinase (CK) , lactate dehydrogenase (LDH) , glutathione (GSH) , glutathione disulfide (GSSG) and superoxide dismutase (SOD) on different recovery following an exhaustive run in rats. 40 male Sprague-Dawley rats were randomly divided into five groups: a sedentary control (C = 8) and sacrificing at 0.5 h (E0.5h = 8) , 1 h (E1h = 8) , 2 h (E2h = 8) , 24 h (E24h = 8) following an exhaustive run on a motor treadmill with 10% grade at a final speed of 30.4 m/min and 64.5 min running time. The results showed a significant increase in plasma membrane lipid peroxidation endproduct (MDA) level at E0.5h (10%) and E1h (14.5%) and tissue-damage marks of CK activities significant increase at E0.5h (99.3%) and to peak at E2h (151.3%) and LDH activities only significant increase at E2h (49.8%) respectively of exercised rats compared with C rats. The antioxidative enzyme SOD activities and GSH concentrations in erythrocytes were no significant difference, whereas GSSG content increased at E1h (36.9%) and the GSH/GSSG ratio was depressed in exercised rats compared with C rats. These findings suggest that one single bout of exhaustive exercise may induce rats muscular and heart tissue-lipid peroxidation damage until E1h and reach to recovery at E2h, whereas the significant increase levels of CK and LDH at E2h may indicate that secondary inflammatory damage occurent with the immune molecules concentrated, and need research to confirm in rats blood circulation.
中文部份
林學宜、林培元、徐廣明、徐台閣(2000)。不同強度運動對抗氧化酵素及丙二醛的影響。體育學報,29,137-148。
林正常、林貴福、徐台閣、吳慧君(譯)(2005)。運動生理學:體適能與運動表現的理論與應用(初版三刷)。台北縣:藝軒。(Powers, S. K., & Howley, E. T., 2001)。
林万登(2004)。精胺酸補充對衰竭運動引起大鼠氧化壓力及發炎反應之影響。私立輔仁大學食品營養學系博士論文,未出版,台北縣。
李淑玲、許美智(2003)。補充含抗氧化劑之飲料對高強度耐力運動時體內抗氧化能力及肌肉損傷之影響。大專體育學刊,5(1),297-304。
李再立(2006)。運動與嗜中性球功能。運動生理暨體能學報,4,41-54。
黃榮松、許美智、簡鴻玟、黃涵磋、方進隆(2001)。長期從事運動訓練對12分鐘跑走、血壓、心跳率、及血中抗氧化劑的影響。體育學報,31,207-218。
廖威彰、謝錦城、許壬榮、陳全壽(1997)。衰竭運動與肌纖維類型對超氧化物歧化酶的影響。體育學報,24,145-156。
謝錦城(1998)。衰竭運動對老鼠紅血球脂質過氧化物、變形性、型態學的影響(國科會專題研究計畫成果報告光碟編號:87H-02-0205)。台北:行政院國家科學委員會科學技術資料中心。
西文部份
Alessio, H. M., Hagerman, A. E., Fulkerson, B. K., Ambrose, J., Rice, R. E., & Wiley, R. L. (2000). Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Medicine and Science in Sports and Exercise, 32(9), 1576-1581.
Alessio, H. M., Goldfarb, A. H., & Cutler, R. G. (1988). MDA content increases in fast- and slow-twitch skeletal muscle with intensity of exercise in a rat. The American Journal of Physiology, 255(6 Pt 1), C874-877.
Ames, B. N., Shigrnaga, M. K., & Hagen, T. M. (1993). Oxidant, antioxidants and the degenerative disease of aging. Proceedings of the National Academy of Science of the United States of American, 90, 7915-7922.
Antunes-Neto, J. M., Toyama, M. H., Carneiro, E. M., Boschero, A. C. Pereira-da-Silva, L., & Macedo, D. V. (2006). Circulating leukocyte heat shock protein 70 (HSP70) and oxidative stress markers in rats after a bount of exhaustive exercise. Stress, 9(2), 107-115.
Aoi, W., Naito, Y., Takanami, Y., Kawai, Y., Sakuma, K., & Ichikawa, H., et al. (2004). Oxidative stress and delayed-onset muscle damage after exercise. Free Radical Biology & Medicine, 37(4), 480-487.
Armstrong, R. B. (1984). Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Medicine and Science in Sports and Exercise, 16(6), 529-538.
Astrand, P. O., & Rodahl, K. (1986). Textbook of Work Physiology (3th ed.). McGraw-Hill, New York, pp 152-153.
Balakrishnan, S. D., & Anuradha, C. V. (1988). Exercise, depletion of antioxidants and antioxidant manipulation. Cell Biochemistry Function, 16(4), 269-275.
Banerjee, A. K., Mondal., A., Chanda., D., & Chakraborti, S. (2003). Oxidant, antioxidant and physical exercise. Molecular and Cellular Biochemistry, 253(1-2), 307-312.
Banhegyi, G., Braun, L., Csala, M., Puskas, F., & Mandl, J. (1997). Ascorbate metabolism and its regulation in animals. Free Radical Biology & Medicine, 23(5), 793-803.
Bedford, T. G., Tipton, C. M., Wilson, N. C., Oppliger, R. A., & Gisolfi, C. V. (1979). Maximum oxygen consumption of rats and its changes with various experimental procedures. Journal of Applied Physiology, 47(6), 1278-1283.
Belcastro, A. N., Arthur, G. D., Albisser, T. A., & Raj, D. A. (1996). Heart, liver, and skeletal muscle myeloperoxidase activity during exercise. Journal of Applied Physiology, 80, 1331-1335.
Bloomer, R. J., Goldfarb, A. H., Wideman, L., McKenzie, M. J., & Consitt, L. A. (2005). Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. Journal of Strength Condiction Research, 19(2), 276-285.
Brooks, G. A., & White, T. P. (1978). Determination of metabolic and heart rate responses of rats to treadmill exercise. Journal of Applied Physiology, 45(6), 1009-1015.
Brown, M. D., & Wallace, D.C. (1994). Molecular basis of mitochondrial DNA disease. Journal of Bioenergetics and Biomembranes, 26(3), 273-289.
Bryer, S. C., & Goldfarb, A. H. (2006). Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. International Journal of Sport Nutrition and Exercise Metabolism, 16(3), 270-280.
Cadenas, S., Rojas, C., Mendez, J., Herrero, A., & Barja, G. (1996). Vitamin E decreases urine lipid peroxidation products in young healthy human volunteers under normal conditions. Pharmacology and Toxicology, 79(5), 247-253.
Cazzola, R., Russo-Volpe, S., Cervato, G., & Cestaro., B. (2003). Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. European Journal of Clinical Investigation, 33(10), 924-930.
Chow, C. K. (1991). Vitamin E and oxidative stress. Free Radical Biology and Medicine, 11(2), 215-232.
Cooke, M. S., Evans, M. D., Herbert, K. E., & Lunec, J. (2000). Urinary 8-oxo-2'-deoxyguanosine--source, significance and supplements. Free Radical Research, 32(5), 381-397.
Cooper, C. E., Vollaard, N. B., Choueiri, T., & Wilson, M. T. (2002). Exercise, free radicals and oxidative stress. Biochemical Society Transactions, 30(2), 280-285.
Davies, K. J., Quintanilha, A. T., Brooks, G. A., & Packer, L. (1982). Free radicals and tissue damage produced by exercise. Biochemical Biophysical Research Communication, 107(4), 1198-1205.
Davies, K. J. (1995). Oxidative stress: the paradox of aerobic life. Biochemical Society Symposium, 61, 1-31.
Dean, R. T., & Cheeseman, K. H. (1987). Vitamin E protects proteins against free radical damage in lipid environments. Biochemical and Biophysical Research Communications, 148(3), 1277-1282.
Dean, R. T., Hunt, J. V., Grant, A. J., Yamamoto, Y., & Niki, E. (1991). Free radical damage to proteins: the influence of the relative localization of radical generation, antioxidants, and target proteins. Free Radical Biology and Medicine, 11(2), 161-168.
Deneke, S. M., & Fanburg, B. L. (1989). Regulation of cellular glutathione. The American Journal of Physiology, 257(4 Pt 1), L163-173.
Elokda, A. S., Shields, R. K., & Nielsen, D. H. (2005). Effects of a maximal graded exercise test on glutathione as a marker of acute oxidative stress. Journal of Cardiopulmonary Rehabilitation, 25(4), 215-219.
Fujii, J., Iuchi, Y., Matsuki, S., & Ishii, T. (2003). Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian Journal of Andrology, 5(3), 231-242.
Goldfarb, A. H., Bloomer, R. J., & McKenzie, M. J. (2005). Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise. Medicine and Science in Sports and Exercise, 37(2), 234-239.
Gomez-Cabrera, M. C., Borras, C., Pallardo, F.V., Sastre, J., Ji, L. L., & Vina, J. (2005). Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. The Journal of Physiology, 567(1), 113-120.
Gomez-Cabrera, M. C., Domenech, E., & Vina, J. (2008). Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radical Biology & Medicine, 44(2), 126-131.
Gorecki, M., Beck, Y., Hartman, J. R., Fischer, M., Weiss, L., & Tochner, Z., et al. (1991). Recombinant human superoxide dismutases: production and potential therapeutical uses. Free Radical Research Communications, 12-13 Pt 1, 401-410.
Griendling, K. K., & FitzGerald, G. A. (2003). Oxidative Stress and Cardiovascular Injury. Part I: Basic Mechanisms and In Vivo Monitoring of ROS. Circulation, 108, 1912 - 1916.
Griffiths, H. R. (2000). Antioxidants and protein oxidation. Free Radical Research, 33, S47-58.
Groussard, C., Rannou-Bekono, F., Machefer, G., Chevanne, M., Vincent, S., & Sergent, O., et al. (2003). Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. European Journal of Applied Physiology, 89(1), 14-20.
Guarnieri, C., Fussi, F., Fanelli, O., Davalli, P., & Clo, C. (1979). RNA and protein synthesis in rat brain during exercise. Effect of arginine and some phosphorylated amino acids. Pharmacology, 19(1), 51-56.
Gul, M., Demircan, B., Taysi, S., Oztasan, N., Gumustekin, K., & Siktar, E., et al. (2006). Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 143(2), 239-245.
Halliwell, B. (1989). Tell me about free radicals, doctor: a review. Journal of the Royal Society of Medicine, 82, 747-752.
Halliwell, B. & Chirico, S. (1993). Lipid peroxidation: its mechanism, measurement, and significance. The American Journal of Clinical Nutrition, 57, 715S-725S.
Halliwell, B. & Gutteridge, J. M. (1990). Role of free radicals and catalytic metal ions in human disease: an overview. Methods in Enzymology, 186, 1-85.
Harris, E. D. (1992). Copper as a cofactor and regulator of copper,zinc superoxide dismutase. The Journal of Nutrition, 122(3), 636-640.
Ho, R. C., Hirshman, M. F., Li, Y., Cai, D., Farmer, J. R., & Aschenbach, W. G., et al. (2005). Regulation of I kappa B kinase and NF-kappa B in contracting adult rat skeletal muscle. American Journal of Physiology. Cell Physiology, 289(4), C794-801.
Hollander, J., Fiebig, R., Gore, M., Ookawara, T., Ohno, H., & Ji, L. L. (2001). Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflugers Archiv : European Journal of Physiology, 442(3), 426-434.
Inashima, S., Matsunaga, S., Yasuda, T., & Wada, M. (2003). Effect of endurance training and acute exercise on sarcoplasmic reticulum function in rat fast- and slow-twitch skeletal muscles. European Journal of Applied Physiology, 89(2), 142-149.
Jenkins, R. R., Friedland, R., & Howald, H. (1984). The relationship of oxygen uptake to superoxide dismutase and catalase activity in human skeletal muscle. International Journal of Sports Medicine, 5(1), 11-14.
Jenkins, R. R. (1988). Free radical chemistry: relationship to exercise. Sports Medicine, 5(2), 156-170.
Ji, L. L. (1993). Antioxidant enzyme response to exercise and aging. Medicine and Science in Sports and Exercise, 25(2), 225-231.
Ji, L. L. (1999). Antioxidants and Oxidative Stress in Exercise. Proceedings of the Society for Experimental Biology and Medicine, 222(3), 283-292.
Ji, L. L. (2008). Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radical Biology and Medicine, 44(2), 142-152.
Ji, L. L., Fu, R., & Mitchell, E. W. (1992). Glutathione and antioxidant enzymes in skeletal muscle: effects of fiber type and exercise intensity. Journal of Applied Physiology, 73(5), 1854-1859.
Ji, L. L., Gomez-Cabrera, M. C., Steinhafel, N., & Vina, J. (2004). Acute exercise activates nuclear factor (NF)-kappa B signaling pathway in rat skeletal muscle. The FASEB Journal : The Official Publication of the Federation of American Societies for Experimental Biology, 18(13), 1499-1506.
Ji, L. L., Gomez-Cabrera, M. C., & Vina, J. (2006). Exercise and hormesis: activation of cellular antioxidant signaling pathway. Annals of the New York Academy of Sciences, 1067, 425-435.
Ji, L.L., Katz, A., Fu, R., Griffiths, M., & Spencer, M. (1993). Blood glutathione status during exercise: effect of carbohydrate supplementation. Journal of Applied Physiology, 74(2), 788-792.
Johnson, F., & Giulivi, C. (2005). Superoxide dismutases and their impact upon human health. Molecular Aspects of Medicine, 26(4-5), 340-352.
Johnson, P. (2002). Antioxidant enzyme expression in health and disease: Effects of exercise and hypertension. Comparative Biochemistry and Physiology, 133, 493-505.
Kaminski, H. J., & Andrade, F. H. (2001). Nitric oxide: biologic effects on muscle and role in muscle disease. Neuromuscul Disorders, 11, 517-524.
Kanter, M. M. (1994). Free radicals, exercise, and antioxidant supplementation. International Journal of Sport Nutrition, 4(3), 205-220.
Kanter, M. M., Lesmes, G. R., Kaminsky, L. A., La Ham-Saeger, J., & Nequin, N. D. (1988). Serum creatine kinase and lactate dehydrogenase changes following an eighty kilometer race. Relationship to lipid peroxidation. European Journal of Applied Physiology and Occupational Physiology, 57(1), 60-63.
Leaf, D. A., Kleinman, M. T., Hamilton, M., Barstow, T. J. (1997). The effect of exercise intensity on lipid peroxidation. Medicine and Science in Sports and Exercise, 28(8), 1036-1039.
Leeuwenburgh, C., & Heinecke, J. W. (2001). Oxidative Stress amd Antioxidants in Exercise. Current Medicinal Chemistry, 8, 829-838.
Lenaz, G., Baracca, A., Fato, R., Genova, M. L., & Solaini, G. (2006). New insights into structure and function of mitochondria and their role in aging and disease. Antioxidants and Redox Signaling, 8(3-4), 417-437.
Li, S., Yan, T., Yang, J. Q., Oberley, T. D., & Oberley, L. W. (2000). The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Research, 60(14), 3927-3939.
Liu, C. C., Huang, C. C., Lin, W. T., Hsieh, C. C., Huang, S. Y., & Lin, S. J., et al. (2005). Lycopene supplementation attenuated xanthine oxidase and myeloperoxidase activities in skeletal muscle tissues of rats after exhaustive exercise. The British Journal of Nutrition, 94(4), 595-601.
Liu, J., Yeo, H. C., Overvik-Douki, E., Hagen, T., Doniger, S. J., Chyu, D. W., et al. (2000). Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. Journal of Applied Physiology, 89(1), 21-28.
Loft, S. & Poulsen, H. E. (1996). Cancer risk and oxidative DNA in man. Journal of Molecular Medicine, 74 (6), 297 - 312.
Lovlin, R., Cottle, W., Pyke, I., Kavanagh, M., Belcastro, A. N. (1987). Are indices of free radical damage related to exercise intensity. European Journal of Applied Physiology, 56(3), 313-316.
Margaritis, I., Palazzetti, S., Rousseau, A. S., Richard, M. J., & Favier, A. (2003). Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. Journal of the American College of Nutrition, 22(2), 147-156.
Marzatico, F., Pansarasa, O., Bertorelli, L., & Della Valle, G. (1997). Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. The Journal of Sports Medicine and Physical Fitness, 37(4), 235-239.
Mastaloudis, A., Morrow, J. D., Hopkins, D. W., Devaraj, S., & Traber, M. G. (2004). Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radical Biology & Medicine, 36(10), 1329-1341.
Mitchell, P. & Moyle, J. (1967). Chemiosmotic hypothesis of oxidative phosphorylation. Nature, 213(5072), 137-139.
Moncada, S., & Higgs, E. A. (2006). The discovery of nitric oxide and its role in vascular biology. British Journal of Pharmacology, 147(1), S193-201.
Morozov, V. I., Tsyplenkov, P. V., Golberg, N. D., & Kalinski, M. I. (2006). The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats. European Journal of Applied Physiology, 97(6), 716-722.
Overgaard, K., Fredsted, A., Hyldal, A., Ingemann-Hansen, T., Gissel, H., & Clausen, T. (2004). Effects of running distance and training on Ca2+ content and damage in human muscle. Medicine and Science in Sports and Exercise, 36(5), 821-829.
Oztasan, N., Taysi, S., Gumustekin, K., Altinkaynak, K., Aktas, O., & Timur, H., et al. (2004). Endurance training attenuates exercise-induced oxidative stress in erythrocytes in rat. European Journal of Applied Physiology, 91(5-6), 622-627
Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87 (1), 315-424.
Parks, D. A., Williams, T. K., & Beckman, J. S. (1988). Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a revaluation. American Journal of Physiology, 54, 827-830.
Peake, J., Nosaka, K., & Suzuki, K. (2005). Characterization of inflammatory responses to eccentric exercise in humans. Exercise Immunology Review, 11, 64-85.
Peake, J., Wilson, G., Hordern, M., Suzuki, K., Yamaya, K., & Nosaka, K., et al. (2004). Changs in neutrophil surface receptor expression, degranulation, and respiratory burst activity after moderate- and high-intensity exercise. Journal of Applied Physiology, 97, 612-618.
Powers, S. K., DeRuisseau, K. C., Quindry, J., & Hamilton, K. L. (2004). Dietary antioxidants and exercise. Journal of Sports Sicence, 22(1), 81-94.
Powers, S. K., Kavazis, A. N., & DeRuisseau, K. C. (2005). Mechanisms of disuse muscle atrophy: role of oxidative stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(2), R337-344.
Powers, S. K., & Hamilton, K. (1999). Antioxidants and exercise. Clinics in Sports Medicine, 18(3), 525-536.
Powers, S. K., & Lennon, S. L. (1999). Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. The Proceedings of the Nutrition Society, 58(4), 1025-1033.
Quindry, J. C., Stone, W. L., King, I., & Broeder, C. E. (2003). The effects of acute exercise on neutrophils and plasma oxidative stress. Medicine and Science in Sports and Exercise, 35, 1139-1145.
Quinn, M. T., & Guass, K. A. (2004). Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. Journal of Leukocyte Biology, 76(4), 760-781.
Radak, Z., Asano, K., Inoue, M., Kizaki, T., Oh-Ishi, S., & Suzuki, K., et al. (1996). Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise. European Journal of Applied Physiology and Occupational Physiology, 72(3), 189-194.
Radak, Z., Kumagai, S., Nakamoto, H., & Goto. S. (2007). 8-oxoguanosine and uracil repair of nuclear and mitochondrial DNA in red and white skeletal muscle of exercise-trained old rats. Journal of Applied Physiology, 102, 1696-1701.
Raj, D. A., Booker, T. S., & Belcastro, A. N. (1998). Striated muscle calcium-stimulated cysteine protease (calpain-like) activity promotes myeloperoxidase activity with exercise. Pflugers Archiv : European Journal of Physiology, 435(6), 804-809.
Reckelhoff, J. F., & Fortepiani, L. A. (2004). Novel mechanisms responsible for postmenopausal hypertension. Hypertension, 43, 918-923.
Richter, C., & Frei, B. (1988). Ca2+ release from mitochondria induced by prooxidants. Free Radical Biology and Medicine, 4(6), 365-375.
Romeu, M., Mulero, M., Giralt, M., Folch, J., Nogues, M. R., & Torres, A., et al. (2002). Parameters related to oxygen free radicals in erythrocytes, plasma and epidermis of the hairless rat. Life Sciences, 71(15), 1739-1749.
Rush, J. W., Denniss, S. G., & Graham, D. A. (2005). Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. Canadian Journal of Applied Physiology, 30(4), 442-474.
Schreck, R., Albermann, K., & Baeuerle, P. A. (1992). Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Radical Research Communications, 17(4), 221-237.
Schroder, H., Navarro, E., Mora, J., Galiano, D., & Tramullas, A. (2001). Effects of alpha-tocopherol, beta-carotene and ascorbic acid on oxidative, hormonal and enzymatic exercise stress markers in habitual training activity of professional basketball players. European Journal of Nutrition, 40(4), 178-184.
Schuessler, H., & Schilling, K. (1984). Oxygen effect in the radiolysis of proteins. Part 2. Bovine serum albumin. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 45(3), 267-281.
Sen, C. K., & Packer, L. (2000). Thiol homeostasis and supplements in physical exercise. The American Journal of Clinical Nutrition, 72(2 Suppl), 653S-669S.
Senturk, U. K., Gunduz F., Kuro, O., Aktekin, M. R., Kipmen, D., & Yalcin, O., et al. (2001). Exercise-induced oxidative stress affects erythrocytes in sedentary rats but not exercise-trained rats. Journal of Applied Physiology, 91(5), 1999-2004.
Senturk, U. K., Gunduz F., Kuro, O., Kocer, G., Ozkaya, Y, G., & Yesilkaya, A., et al. (2005). Exercise- induced oxidative stress leads hemolysis in sedentary but not trained humans. Journal of Applied Physiology, 99, 1434-1441.
Sjodin, B., Westing, Y. H., & Apple, F. S. (1990). Biochemical mechanisms for oxygen free radical formation during exercise. Sports Medicine, 10(4), 236-254.
Smith, J. A. (1995). Exercise, training and red blod cell turnover. Sports Medicine, 19(1), 9-31.
Stamler, J. S., & Meissner, G. (2001). Physiology of nitric oxide in skeletal muscle. Physiological Reviews, 81(1), 209-237.
Subudhi, A. W., Davis, S. L., Kipp, R. W., & Askew, E. W. (2001). Antioxidant status and oxidative stress in elite alpine ski racers. International Journal of Sport Nutrition and Exercise Metabolism, 11(1), 32-41.
Takada, Y., Mukhopadhyay, A., Kundu, G. C., Mahabeleshwar, G. H., Singh, S., & Aggarwal, B. B. (2003). Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65. The Journal of Biological Chemistry, 278(26), 24233-24241.
Tauler, P., Aguilo, A., Fuentespina, E., Tur, J. A., & Pons, A. (2002). Diet supplementation with vitamin E, vitamin C and beta-carotene cocktail enhances basal neutrophil antioxidant enzymes in athletes. European Journal of Physiology, 443(5-6), 791-797.
Taular, P., Aguilo, A., Guix, P., Jimenez, F., Villa, G., & Tur, J. A., et al. (2005). Pre-exercise antioxidant enzyme activities determine the antioxidant enzyme erythrocyte response to exercise. Journal of Sports Sciences, 23(1), 5-13.
Tidball, J. G. (2005). Inflammatory processes in muscle injury and repair. American Journal of Physiology. Regulatory, Iintegrative and Comparative Physiology, 288(2), R345-353.
Traber, M. G. (2006). Relationship of vitamin E metabolism and oxidation in exercising human subjects. The British Journal of Nutrition, 1, S34-37.
Uchiyama, S., Tsukamoto, H., Yoshimura, S., & Tamaki, T. (2006). Relationship between oxidative stress in muscle tissue and weight-lifting-induced muscle damage. Pflugers Archiv : European Journal of Physiology, 452(1), 109-116.
Umegaki, K., Daohua, P., Sugisawa, A., Kimura, M., & Higuchi, M. (2000). Influence of one bout of vigorous exercise on ascorbic acid in plasma and oxidative damage to DNA in blood cells and muscle in untrained rats. The Journal of Nutritional Biochemistry, 11(7-8), 401-7.
Urso, M. L., & Clarkson, P. M. ( 2003). Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 189, 41-54.
Vina, J., Gimeno, A., Sastre, J., Desco, C., Asensi, M., & Pallardo, F. V., et al. (2000). Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB life, 49(6), 539-544.
You, T., Goldfarb, A. H., Bloomer, R. J., Nguyen, L., Sha, X., & McKenzie, M. J. (2005). Oxidative stress response in normal and antioxidant supplemented rats to a downhill run: changes in blood and skeletal muscles. Canadian Journal of Applied Physiology, 30(6), 677-689.
Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 33(3), 337-349.
Zhang, R., Brennan, M. L., Shen, Z., MacPherson, J. C., Schmitt, D., & Molenda, C. E., et al. (2002). Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. The Journal of Biological Chemistry, 27(48), 46116-46122.
Zhou, L. Z., Johnson, A. P., & Rando, T. A. (2001). NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radical Biology & Medicine, 31(11), 1405-1416.