簡易檢索 / 詳目顯示

研究生: 陳智群
Jhih-cyun Chen
論文名稱: 摻雜鑭與鐠對鐵酸鉍陶瓷電性與磁性的影響
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 126
中文關鍵詞: 鐵酸鉍複鐵式材料化學共沉法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用化學共沉法可在800℃燒結可得到純相鐵酸鉍(BiFeO3)塊材,並摻雜鑭與鐠且觀察其性質,摻雜的成分為Bi0.8La0.2-xPrxFeO3(x=0, 0.05, 0.15, 0.2),在摻雜量20%時可以從XRD觀察到晶體結構的轉換,由菱形晶轉變為扭曲的正方晶,且從SEM影像可以觀察到摻雜使得鐵酸鉍的晶粒變小,且鐠的摻雜在高溫燒結並沒有觀察到晶粒明顯成長。在室溫且頻率為1 MHz下的介電常數以摻雜鑭20%為最大,隨著鐠含量增加而漸減,但都比鐵酸鉍來得高,而介電損失以摻雜鐠20%有最低的值,在I-V量測發現摻雜鑭與鐠並無改善鐵酸鉍的漏電流。在不同溫度下量測其介電性質,鐵酸鉍在高溫時主要因為傳導損失造成介電常數增加,摻雜鑭與鐠皆使得發生介電鬆弛現象,利用介電損失的峰值求出鬆弛活化能,由結果得知摻雜鐠含量增加,鬆弛活化能也增加。而從阻抗分析的結果,可推論摻雜使得介電鬆弛的原因是因為晶粒與晶界的電阻值差異,造成所謂的介面極化效應,使得有介電鬆弛現象的發生,同時也解釋了介電峰值的產生是由於傳導損失和空間電荷在不同頻率貢獻所造成。極化曲線可觀察出摻雜鑭可使鐵酸鉍的鐵電性改善,而從磁化曲線則得知鑭與鐠的添加使鐵酸鉍的磁結構改變,使磁化量增加,而摻雜鐠含量增加,磁性也大為增加。


    摘要.........Ⅰ 致謝.........Ⅱ 目錄.........Ⅲ 表目.........Ⅶ 圖目錄.......Ⅷ 第一章 前言.........................................1 1.1 簡介..............................................1 1.2 研究動機..........................................2 第二章 文獻回顧....................................................3 2.1 簡介複鐵式材料....................................3 2.1.1 鈣鈦礦結構.................................3 2.1.2 鐵電性質...................................4 2.1.3 介電性質...................................6 2.1.4 材料的磁性.................................9 2.1.5 複鐵式材料................................11 2.2 鐵酸鉍材料特性...................................16 2.2.1 晶體結構..................................16 2.2.2 鐵電性質.................................17 2.2.3 磁性質...................................17 2.3 鐵酸鉍塊材的合成.................................18 2.3.1固態反應法......................................18 2.3.2 Pechini製程....................................18 2.3.3化學共沉法......................................19 2.4 固相燒結.........................................21 第三章 實驗方法....................................31 3.1 鐵酸鉍與摻雜鑭和鐠之鐵酸鉍塊材的製備.............31 3.1.1粉末的製備......................................31 3.1.2粉末煆燒與球磨..................................32 3.1.3試片壓製與燒結..................................33 3.2 實驗量測.........................................33 3.2.1熱差/熱重(TG/DTA)熱分析.........................33 3.2.2晶體結構分析....................................34 3.2.3微觀結構........................................35 3.2.4介電性質與阻抗分析..............................35 3.2.5漏電流量測......................................36 3.2.6 P-E極化曲線....................................37 3.2.7 M-H磁化曲線....................................37 第四章 實驗結果....................................42 4.1 TG/DTA熱分析.....................................42 4.2 XRD分析..........................................42 4. 3 SEM微觀結構分析.................................43 4. 4 室溫介電性質分析................................44 4.5 室溫漏電流分析...................................47 4.6 變溫介電性質分析.................................47 4.7 變溫交流導電率分析...............................49 4.8 變溫阻抗分析.....................................50 4.9 PE極化曲線分析...................................52 4.10 M-H磁化曲線分析.................................53 4.11 摻雜鑭與鐠對鐵酸鉍的影響........................54 4.11.1 晶體結構......................................54 4.11.2 微觀結構......................................54 4.11.3 室溫介電性質..................................55 4.11.4 室溫漏電性質(I-V) ............................55 4.11.5 變溫介電性質..................................55 4.11.6 變溫阻抗性質..................................56 4.11.7 PE極化曲線分析................................56 4.11.8 磁化曲線分析..................................56 第五章 結論........................................57 第六章 參考文獻...................................122

    [1] B. Jaffe, W.R. cook, and H. Jaffe, “Piezoelectric ceramics”, Academic Press, New York, P50 (1971)
    [2] 吳朗,“電子陶瓷-介電”, 全新資訊圖書 (1994)
    [3] S. Hoshino, Y. Mitsui, F. Jona, and R. Pepinsky, “Dielectric and Thermal Study of Tri-Glycine Sulfate and Tri-Glycine Fluoberyllate”, Phys. Rev. B, 107,1255 (1957)
    [4] A. J. Moulson and J. M. Herbert, “Electroceramics, materials, properties and applications”, p52-55 and p61-62 (1990)
    [5] 李雅明, “固態電子學”, 全華科技 (1995)
    [6] Nicola A. Hill, “Why are ther so few magnetic ferroelectrics?”, J. Phys. Chem. B, 104, 6694-6709 (2000)
    [7] J.B Goodenough. “Magnetism and the chemical bond”. Interscience Publishers, New York (1963)
    [8] Manfred Fiebig, “Revival of the magnetoelectric effect”, J.Phys.D: Appl.Phys.38 R123-152 (2005)
    [9] C. W. Nan, “ Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases”, Phys. Rev. B., 50 [9] 6082-6088 (1994)
    [10] H. Zheng, J. Wang, “Multiferroic BaTiO3-CoFe2O4 nanostructures”, SCIENCE, 303 [5658] 661-663 (2004)
    [11] R. P. Mahajan, K. K. Patankar, “Dielectric properties and electrical conduction of nickel ferrite-barium titanate composites”, Indian J. PureAppl. Phys. 38 [8] 615-620 (2000)
    [12] Ryu J, Priya S, Uchino K and Kim H E 2002, “Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials “, J. Electroceramics, 8, 107–119 (2002)
    [13] Kubel F and Schmid H , “STRUCTURE OF A FERROELECTRIC AND FERROELASTIC MONODOMAIN CRYSTAL OF THE PEROVSKITE BIFEO3,” Acta Crystallogr. B [46] 698 (1990)
    [14] Coeur´e P, Guinet F, Peuzin J C, Buisson G and Bertaut E F Proc. “International Meeting on Ferroelectricity” (Prague, 1966) (Prague:Institute of Physics of the Czechoslovak Academy of Sciences) (1966)
    [15] A. K. Pradhan, a’ Kai Zhang, D. Hunter, J. B. Dadson, and G. B. Loutts, “Magnetic and electrical properties of single-phase multiferroic BiFeO3”,J. Appl. Phys. 97, 093903 (2005)
    [16] I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982)
    [17] Venevtsev Y N, Gagulin V V and Zhitomirsky I D, “MATERIAL SCIENCE ASPECTS OF SEIGNETTE-MAGNETISM PROBLEM,” Ferroelectrics 73 221-248 (1987)
    [18] Ascher E, Schmid H and Tar D, “Dielectric properties of boracites and evidence for ferroelectricity”, Solid State Commun. 2 45 (1964)
    [19] Schmid H, Rieder H and Ascher E, “Magnetic susceptibilities of some 3d transition metal boracites”, Solid State Commun. 3 327 (1965)
    [20] Scott J F Ferroelectrics 24 127 (1980)
    [21] Eibsch¨utz M and Guggenheim H J, “Antiferromagnetic-piezoelectric crystals: BaMe4 (M = Mn, Fe, Co and Ni),” Solid State Commun. 6 737 (1968)
    [22] Venevtsev Y N, Gagulin V V and Zhitomirsky I D Ferroelectrics 73 221 (1987)
    [23] Benjamin Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, “Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order”, Phys. Rev. B 69 064114 (2004)
    [24] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science 299 1719 (2003)
    [25] J.R.Teague,R.G.erson,and W.J.James, “Dielectric hysteresis in single crystal BiFeO3”, Solid State Comm. 8 1073 (1970)
    [26] M.M.Kumar, V.R.Palker, K.Srinivas, andS.V.Sueyanaryana, “Ferroelectricity in a pure BiFeO3 ceramic”, Appl. Phys. Lett. 76, 2764 (2000)
    [27] J. F. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P.Pyatakov, A. K. Zvezdin, and D. Viehland, “Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions” Appl. Phys. Lett. 84, 5261 (2004)
    [28] A. Kadomtseva, Yu. Popov, G. Vorob’ev, and A. Zvezdin,“Spin density wave and field induced phase transitions in magnetoelectric antiferromagnets”, Physica B 211, 327 (1995).
    [29] M. P. Pechini, “Method of preparing lead and alkaline earch titanates and niobates and coating method using the same to form a capacitor”, U.S. Patent No. 3330697 July 11 (1967)
    [30] S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, “Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route”, J. Am. Ceram. Soc. 88 1349-1352 (2005)
    [31] Y. Arai, “Chemistry of Powder Production” Chapman and Hall Inc. London (1991)
    [32] 汪建民, “陶瓷技術手冊(上)” 再版 p. 41中華民國粉末冶金協會與中華民國產業科技發展協進會 (1999)
    [33] R.L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models”, J. Appl. Phys. 32 787 (1967)
    [34] D. W. Budworth, “Theory of Pore Closurc During Sintering”, Trans. Brit. Ceram. Soc. 69 29 (1970)
    [35] Takeshi YOSHIMURA and Norifumi FUJIMURA, “Polarization Hysteresis Loops of Ferroelectric Gate Capacitors Measured by Sawyer-Tower Circuit”, Jpn. J. Appl. Phys. Vol. 42 6011 (2003)
    [36] Chen Ang and Zhi Yu, “Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3”, Phys. Rev. B 62 228 (2000)
    [37] W.D.Kingery, H.K.Bowen, and D.R.Uhlmann, “ Introduction to ceramics”
    [38] I. Sosnowska1, W. Schäfer, W. Kockelmann, K.H. Andersen, and I.O. Troyanchuk, “Crystal structure and spiralmagnetic ordering of BiFeO3 doped with manganese”, Appl. Phys. A 74 S1040 (2002)
    [39] Claude Ederer and Nicola A. Spaldin, “Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite”, Phy. Rev. B 71, 060401(R) (2005)
    [40] D. Lee, M. G. Kim, S. Ryu, and H. M. Jang, “Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films”, Appl. Phys. Lett. 86. 222903 (2005)
    [41] J. S. Kim, C. II Cheon, C. H. Lee, and P. W. Jang, “Weak ferromagnetism in the ferroelectric BiFeO3–ReFeO3–BaTiO3 solid solutions (Re = Dy,La)”, J. Appl. Phys. 96. 468 (2004)
    [42] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, and Z. G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett. 84, 1731 (2004).
    [43] J. S. Kim, C. II Cheon, Y. N. Choi, and P. W. Jang, “Ferroelectric and ferromagnetic properties of BiFeO3–PrFeO3–PbTiO3 solid solutions”, J. Appl. Phys. 93 9263 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE