簡易檢索 / 詳目顯示

研究生: 王韋婷
Wang, Wei-Ting
論文名稱: 應用在RRAM記憶體之氧化鋅薄膜及其電極材料開發
Effect of electrode material on the resistance switching of ZnO film for RRAM applications
指導教授: 吳泰伯
Wu, Tai-Bor
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 105
中文關鍵詞: 電阻式記憶體氧化鋅電極材料
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we successfully fabricated the highly (002) oriented ZnO thin films of 50 nm thick were prepared on Pt/Ti/SiO2/Si substrate by rf magnetron sputtering at room temperature. Various top electrodes were deposited on ZnO films and electrode material dependence on resistance switching characteristic was evaluated with structure of TE/ZnO/Pt.
    Different electrode materials selected in this thesis were used to elucidate that the role of electrode plays in resistive switching behavior. Moreover, the metal electrode chosen in this thesis is based on work function of metal and free energy of metal oxide formation.
    For ZnO films, Pt/ZnO/Pt, Cr/ZnO/Pt, Al/ZnO/Pt, Mo/ZnO/Pt devices show reproducible bi-stable resistance switching behavior. Ratio of HRS to LRS is about 20~50 except Mo/ZnO/Pt device. According to the variation of resistive switching parameters, Cr/ZnO/Pt device exhibited better resistance switching properties in comparison with Pt/ZnO/Pt, Al/ZnO/Pt, and Mo/ZnO/Pt devices.


    Chapter 1 Introduction 1 Chapter 2 Literature 6 2.1 Introduction of memory 6 2.2 Emerging non-volatile memories 7 2.2.1 FeRAM (Ferroelectric RAM) 7 2.2.2 MRAM (Magnetic RAM) 7 2.2.3 PCRAM (Phase change RAM) 8 2.2.4 RRAM (Resistance RAM) 9 2.3 RRAM (Resistance Random Access Memory) 9 2.3.1 PrCaMnO3 9 2.3.2 SrZrO3 10 2.3.3 Organic materials 11 2.3.4 Transition metal oxide 12 2.3.4.1 Preliminary study of ZnO thin films in RRAM 13 2.3.5 Mechanism of RRAM (Resistance RAM) 14 2.3.5.1 Filamentary model 14 2.3.5.3 Charge-trap in small domain 15 2.3.5.3 Conducting path 15 2.4 Effect of electrode material on resistance switching 16 2.4.1 Work function of electrode 16 2.4.2 Free energy of formation of oxide 17 2.4.3 Complex 18 Chapter 3 Experimental method and procedures 33 3.1 Experimental procedures 33 3.1.1 Substrate preparation 33 3.1.2 Zinc oxide (ZnO) thin film preparation 33 3.1.3 Top electrodes preparation 34 3.2 Property analysis 34 3.2.1 Film thickness 34 3.2.2 Crystalline structure 34 3.2.3 Composition analysis 35 3.2.4 Electrical properties 35 Chapter 4 Results and Discussion 41 4.1 Electrical analysis of electrode materials 41 4.1.1 Sheet resistance 41 4.1.2 Resistivity 42 4.2 Analysis of ZnO film 43 4.2.1 Crystalline structure 43 4.2.2 Film thickness 43 4.2.3 Analysis of chemical bonding state 44 4.3 Chemical analysis by XPS 44 4.3.1 Cr-ZnO interface 44 4.3.2 Al-ZnO interface 45 4.3.3 Mo-ZnO interface 46 4.3.4 Pt-ZnO interface 46 4.4 Electrical property 47 4.4.1 Pt/ ZnO/Pt devices 47 A. Basic characteristic of I-V curve 47 B. Effect of current compliance 48 C. Statistic analysis 48 4.4.2 Cr/ ZnO/Pt devices 48 A. Basic characteristic of I-V curve 48 B. Effect of current compliance 49 C. Statistic analysis 49 4.4.3 Al/ ZnO/Pt devices 50 A. Basic characteristic of I-V curve 50 B. Effect of current compliance 50 C. Statistic analysis 51 4.4.4 Mo/ ZnO/Pt devices 51 A. Basic characteristic of I-V curve 51 B. Statistic analysis 52 4.4.5 Comparison of material of top electrode 52 A. I-V characteristics 52 B. Set and reset voltage 53 C. Set and reset current 53 D. Resistance distribution 54 E. Retention 54 4.5 Curve fitting 55 4.5.1 Pt/ZnO/Pt devices 57 4.5.2 Cr/ZnO/Pt devices 58 4.5.3 Mo/ZnO/Pt devices 58 4.5.4 Al /ZnO/Pt devices 59 4.6 Mechanism of resistance switching 60 Chapter 5 Conclusion 100 Reference 102

    1. BCC, Market Research Reports and Technical Publications. 2005.
    2. Sawa, A., Resistive switching in transition metal oxides. Materials Today, 2008. 11(6): p. 28-36.
    3. http://www.iue.tuwien.ac.at/phd/ayalew/node56.html.
    4. http://www.engr.sjsu.edu/ellingham/ellingham_tool_p1.php.
    5. Gerhard Muller, T.H., Micheal Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, Status and outlook of emerging nonvolatole memory technologies. IEEE, 2004.
    6. 簡昭欣, 呂正傑, 陳志遠, 張茂南, 許世祿, 趙天生, 先進記憶體簡介. 國研科技創刊號.
    7. http://en.wikipedia.org/wiki/Random_access_memory.
    8. 劉志益, 曾., 電阻式非揮發記憶體之近期發展.
    9. http://electronics.howstuffworks.com/flash-memory.htm.
    10. I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, IEDM Tech. Dig., 2005: p. 587-590.
    11. 張文淵, 以LaNiO3底電極開發(Pr,Ca)MnO3非揮發性電阻式記憶體特性之研究. 清華大學, 碩士論文, 2006.
    12. 余昭倫, 縱觀新世代記憶體-相變化記憶(PCRAM). Digitimes 技術 IT, 2006.
    13. Liu, S.Q., N.J. Wu, and A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Applied Physics Letters, 2000. 76(19): p. 2749-2751.
    14. Sawa, A., et al., Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Applied Physics Letters, 2004. 85(18): p. 4073-4075.
    15. Beck, A., et al., Reproducible switching effect in thin oxide films for memory applications. Applied Physics Letters, 2000. 77(1): p. 139-141.
    16. Ma, L.P., et al., Organic bistable light-emitting devices (vol 80, pg 362, 2002). Applied Physics Letters, 2002. 80(16): p. 3018-3018.
    17. Ma, L.P., J. Liu, and Y. Yang, Organic electrical bistable devices and rewritable memory cells. Applied Physics Letters, 2002. 80(16): p. 2997-2999.
    18. Seo, S., et al., Reproducible resistance switching in polycrystalline NiO films. Applied Physics Letters, 2004. 85(23): p. 5655-5657.
    19. I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, H. S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses. IEDM Tech. Dig., 2004.
    20. Chang, W.Y., et al., Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Applied Physics Letters, 2008. 92(2): p. 3.
    21. A. Asamitsu, Y.T., H. Kuwahara, and Y. Tokura, Nature (London), 1997. 388, 50.
    22. Tomioka, Y.T.a.Y., J. Magn. Mater, 1999. 200, 1.
    23. Baikalov, A., et al., Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface. Applied Physics Letters, 2003. 83(5): p. 957-959.
    24. Chen, X., et al., Direct resistance profile for an electrical pulse induced resistance change device. Applied Physics Letters, 2005. 87(23): p. 3.
    25. Hsu, S.T.Z., W.W; Li, T.K.; Pan, W.; Ignatiev, A.; Papagianni, C.; Wu, N.J., Non-volatile Memory Technology Symposium, 2005.
    26. 蔡濬名, 氧化鋅薄弱於非揮發電阻式記憶體特性之研究. 清華大學, 碩士論文, 2008.
    27. Xu, N., et al., Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention. Semiconductor Science and Technology, 2008. 23(7): p. 4.
    28. Xu, N., et al., Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Applied Physics Letters, 2008. 92(23): p. 3.
    29. Choi, B.J., et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. Journal of Applied Physics, 2005. 98(3): p. 10.
    30. Kinoshita, K., et al., Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide. Applied Physics Letters, 2006. 89(10): p. 3.
    31. Kim, Y.M. and J.S. Lee, Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. Journal of Applied Physics, 2008. 104(11): p. 6.
    32. Park, G.S., et al., Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Applied Physics Letters, 2007. 91(22): p. 3.
    33. Rozenberg, M.J., I.H. Inoue, and M.J. Sanchez, Nonvolatile memory with multilevel switching: A basic model. Physical Review Letters, 2004. 92(17): p. 4.
    34. Fujimoto, M., et al., TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Applied Physics Letters, 2006. 89(22): p. 3.
    35. Yoshida, C., et al., High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application. Applied Physics Letters, 2007. 91(22): p. 3.
    36. Seo, S., et al., Electrode dependence of resistance switching in polycrystalline NiO films. Applied Physics Letters, 2005. 87(26): p. 3.
    37. Yang, W.Y. and S.W. Rhee, Effect of electrode material on the resistance switching of Cu2O film. Applied Physics Letters, 2007. 91(23): p. 3.
    38. Lee, H.S., et al., Electrode influence on the transport through SrRuO3/Cr-doped SrZrO3/metal junctions. Applied Physics Letters, 2007. 90(20): p. 3.
    39. XU, N., Gao, B, A unified physical model of switching behavior in oxide-based RRAM. Symposium on VLSI Technology Digest of Technical Papers, 2008.
    40. 鄭凱嶸, 二氧化鈦-白金奈米複合薄膜應用於非揮發性電阻式記憶體之特性研究. 清華大學, 碩士論文, 2008.
    41. F.M.Smits, Measurement of Sheet Resisitivities with the Four-Point Probe. The Bell System Technical Journal, 1958. 37: p. 711-718.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE