研究生: |
黃柏豪 Haung, Po-Hao |
---|---|
論文名稱: |
以離子束濺鍍法鍍製奈米多層膜其光學特性之退火效應與離子束濺鍍法鍍製氮化矽薄膜之材料特性分析 Anneal effect on optical properties of nano-layer coating deposited by ion beam sputtering and material properties of silicon nitride coatings deposited by ion beam sputtering |
指導教授: |
趙煦
Chao, Shiuh |
口試委員: |
王立康
陳至信 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 離子束濺鍍法 、氮化矽薄膜 、奈米多層膜 |
外文關鍵詞: | ion-beam sputtering, silicon nitride, nano-layer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了偵測到更微小的重力波訊號、觀察到更多的天體變化,提升干涉儀的靈敏度是必須的。提高干涉儀靈敏度的關鍵之一在於能否降低光學薄膜的熱擾動。根據Fluctuation-Dissipation Theorem,可知熱擾動正比於光學薄膜的溫度與機械損耗。此外,薄膜的光學吸收也是重點,過高的光學吸收會導致訊號的強度減弱。故本實驗室致力於開發具有低的低溫機械損耗與低光學吸收的光學薄膜。
我們使用離子束濺鍍法研究二氧化矽、二氧化鈦與奈米多層膜結構光學特性。使用此方式鍍製出的二氧化矽與二氧化鈦其消光係數皆在低階10-5數量級,而將兩種材料堆疊為奈米多層膜結構後,光學吸收在此結構下沒有明顯的影響。接著在進行600oC退火後,二氧化矽的消光係數有著顯著的改善,二氧化鈦的消光係數亦有改善但並不明顯。
在先前研究PECVD鍍製的氮化矽薄膜中發現,薄膜內的N-H鍵、矽懸鍵與光學吸收呈正相關,Si-H鍵則是會有Two-level system而影響到室溫的機械損耗。故計畫使用離子束濺鍍法鍍製氮化矽薄膜。於研究中發現,使用濺鍍法鍍製的氮化矽薄膜內,含有預期外的Si-H鍵及較多的矽懸鍵,且薄膜的消光係數也達到10-2數量級,愈使用在高反射鏡上是還有待改善的。
To detect gravity signals and observe more celestial changes. It is necessary to increase the sensitivity of the interferometer. One of the keys to improve the sensitivity of the interferometer is whether it can reduce the thermal noise of the optical film. According to Fluctuation-Dissipation Theorem, we can know that thermal perturbation is proportional to the temperature and mechanical loss of the optical film. Besides, the optical absorption of the film is also essential. If the optical absorption is too high, the intensity of the signal is lowered. Therefore, we are committed to the development of optical films with low mechanical loss at low temperatures and low optical absorption.
We study optical properties of silica, titania, and nano-layer structure deposited by ion beam sputtering. The extinction coefficients of silica and titania deposited by ion beam sputtering are 10-5 order, and after the two materials are combined into a nano-multilayer structure, optical absorption has no obvious influence under this structure. Then, after annealing at 600oC, the extinction coefficient of silica is improved obviously, and titania is also improved but not obvious.
In the previous study of silicon nitride film deposited by PECVD, we know that the N-H bond and silicon dangling bond in the film are proportional to optical absorption, and the Si-H bond is a two-level system that affects the mechanical loss at room temperature. Therefore, we use an ion beam sputtering method for coating silicon nitride film. In the research, we found the silicon nitride coated by sputtering method contains the expected Si-H bond and more silicon dangling bonds, and the extinction coefficient is 10-2 order. Consequently, using the film for high reflection mirror of interferometer still be improved.
[1] A. Einstein, “Die gruTSRIage der allgemeinen relativitätstheorie”, Annalen der Physik 49, 769-822 (1916).
[2] R. A. Hulse, and J. H. Taylor, “Discovery of pulsar in a binary system”, Astrophys. J. 195, L51-L53 (1975).
[3] B. P. Abbott et al., “Observation of gravitational waves from a 22-solar-mass binary black hole merger”, Phys. Rev. Lett. 116, 061102 (2016)
[4] LIGO Scientific Collaboration, “Instrument Science white paper of LIGO 2018”, http://dcc.ligo.org/LIGO-T1800133/public
[5] H. B. Callen et al., “Irreversibility and generalized noise”, Phys. Rev., Vol.83, 34-40 (1951)
[6] R. F. Greene et al., “On the formalism of thermodynamic fluctuation theory”, Phys. Rev., Vol.83, 1231-1235(1951)
[7] H. B. Callen et al., “On a theorem of irreversible thermodynamics”, Phys. Rev., Vol.86, 702-710(1952)
[8] 王順錦, “應用於雷射干涉重力波偵測器之以離子束濺鍍法製作奈米膜層結構高反射鏡及其結晶條件之探討”, 國立清華大學碩士論文 (2013)
[9] 宋欣忠, “奈米多層薄膜在熱退火後的晶粒尺寸研究”, 國立清華大學碩士論文 (2013)
[10] 張啟禮, “利用離子束濺鍍法鍍製奈米多層膜其低溫機械損耗抑制效應與退火效應之研究”, 國立清華大學碩士論文 (2018)
[11] S. Chao et al., “Inhibition of Cryogenic Mechanical Loss in Thin Films by Thickness Reduction”, LIGO Report No. G1800300-v2 (2018)
[12] S. Chao et al., “Annealing Effect on the PECVD Silicon Nitride Films”, LIGO Report No. G1900305(2019)
[13] 張臨安, “以電漿輔助化學氣相沉積法鍍製高氮氮化矽薄膜其熱退火對光學特性與機械特性之影響”, 國立清華大學碩士論文 (2018)
[14] T. Liu, Study of annealing effect on the optical properties and the room temperature mechanical loss of the silicon-rich silicon nitride films deposited with PECVD, Master thesis, National Tsing Hua University (2018)
[15] S. Chao et al., “Annealing effect on the nano-meter scale titaniasilica multi-layers for mirror coatings of the laser interferometer gravitational waves detector”, LIGO Report No. G1900356-v3(2019)
[16] 黃榛莉, “電漿輔助化學氣相沉積之氮化矽薄膜其熱退火後光學特性與無氨氣電漿輔助化學氣相沉積法之氮化矽薄膜其光學及機械特性之探討” , 國立清華大學碩士論文 (2019)
[17] 潘皇緯, “利用電漿輔助化學氣相沉積法鍍製低熱雜訊之氮化矽與氧化矽薄膜應用於雷射干涉重力波偵測器反射鏡之研究” , 國立清華大學博士論文 (2018)
[18] 黃文正, “以離子束濺鍍法製作低損耗薄膜應用於雷射干涉重力波偵測儀之高反射鏡製程準備”, 國立清華大學碩士論文 (2012)
[19] 王文祥, “具低損耗之光學混合膜及雷射反射鏡的研究”, 國立清華大學博士論文 (1999)
[20] 郭令智, “利用離子束濺鍍法鍍製二氧化矽與二氧化鈦之奈米多層薄膜應用於雷射干涉重力波偵測器反射鏡之研究”, 國立清華大學碩士論文 (2019)
[21] A. L. Alexandrovski et al., Photothermal common-path interferometry (PCI): new developments, Proc.SPIE 7193, Solid State Lasers XVIII: Technology and devices 71930D doi:10.1117/12.814813 (2009)
[22] 康乃中, “光熱共光路干涉儀系統之設置與電漿輔助化學氣相沉積法沉積之氮化矽薄膜光學吸收之研究”, 國立清華大學碩士論文 (2017)
[23] https://www.corning.com/
[24] R. Adhikari et al., LIGO III Blue ConceptLIGO, LIGO Report No. LIGO-G1200573, 2012, http://dcc.ligo.org/LIGO-G1200573-v1/public
[25] A.J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures”, Opt. Appl. 36, 39-50 (2006)
[26] M. Vila et al., “Mechanical properties of sputtered silicon nitride thin films”, Journal of Applied Physics 94, 7868 (2003)
[27] M. Vila et al., “Electrical behavior of silicon nitride sputtered thin films”, Thin Solid Films 459, 195–199 (2004)
[28] G. Xu et al., “Optical investigation of silicon nitride thin films deposited by r. f. magnetron sputtering”, Thin Solid Films 425, 196–202 (2003)
[29] S. Tan and T. E. Schlesinger et al., “The role of Si3N4 layers in determining the texture of sputter deposited LiNbO3 thin films”, Appl. Phys. Lett. 68, 2651 (1996)
[30] L. Huang et al., “Structure and composition studies for silicon nitride thin films deposited by single ion bean sputter deposition”, Thin Solid Films 299, 104–109 (1997)
[31] E. A. Taft, “Characterization of Silicon Nitride Films”, J. Electrochem. Soc., 118, 1341-1346 (1971)
[32] S. Hasegawa et al. Connection between Si-N and Si-H Vibrational Properties in Amorphous SiNx: H Films. Philos. Mag. B, 59, 365−375 (1989)
[33] M. H. Srodsky et al., “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, 16, 8 (1977)
[34] H. Shanks et al., “Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon”, Phys. Status Solidi, 100, 43 (1980)
[35] C. J. Fang et al., “The hydrogen content of a-Ge:H and a-Si:H as determined by ir spectroscopy, gas evolution and nuclear reaction techniques”, Journal of Non-Crystalline Solids, 35-36, 255-260 (1980)
[36] A. Morimoto et al., “Properties of Hydrogenated Amorphous Si-N Prepared by Various Methods”, Jpn. J. Appl. Phys., 24, 1394, (1985)
[37] V. A. Burdovitsin, “Silicon nitride and oxynitride films prepared by ion beam reactive sputtering”, Thin Solid Films, 105 197-202 (1983)
[38] R. P. Netterfield et al., “Synthesis of silicon nitride and silicon oxide films by ion-assisted deposition”, Applied optics, Vol. 25, No. 21 (1986)
[39] R. Birney et al., “Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy”, Phys. Rev. Lett. 121, 191101 (2018)
[40] Matthew A et al., “What is the Young’s Modulus of Silicon?”, Journal of microelectromechanical systems, Vol. 19, No. 2, April 2010
[41] 張瑞慶, “奈米壓痕技術與應用”, 聖約翰科技大學機械系, 2010.
[42] S. Chao et al., “Mechanical loss of silicon nitride films grown by plasma-enhanced chemical vapor deposition(PECVD) method”, LIGO Report No. G1300171-v1(2013).