研究生: |
侯明豔 Hou, Ming-Yan |
---|---|
論文名稱: |
經由氣氛控制與碳披覆之鈦酸鋰的電化學特性與其在高功率鋰離子電池的應用 Electrochemical Characteristics of Carbon-assisted Lithium Titanate with Atmosphere Control for High-power Lithium-ion Batteries |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
杜正恭
Duh, Jenq-Gong 李志偉 Lee, Jyh-Wei 石東益 Shih, Toung-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 120 |
中文關鍵詞: | 鈦酸鋰 、高分子熱裂解 、氧缺陷 、多孔結構 、交流阻抗分析 |
外文關鍵詞: | Lithium titanate, Polymer pyrolysis, Oxygen vacancy, Porous structure, AC impedance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著各種再生能源的發展,開發鋰離子二次電池作為未來的電力的儲能系統與裝置也日益備受重視,例如應付風能與太陽能等間歇性再生能源輸出之定置型儲電系統以及裝載於電動車的動力鋰電池裝置。鈦酸鋰負極材料由於穩定的結構與安全工作電壓範圍,使其在鋰電池安全性與長循環壽命方面具有相當的優勢。然而鈦酸鋰是絕緣性材料,因此本研究致力於藉由結構缺陷與碳的批覆來提升導電度以改善其快速充放電性能。
論文第一部分探究還原性氣氛對於鈦酸鋰的影響,研究結果發現具有氧空缺之鈦酸鋰除了在導電性上的提升,鋰離子擴散速率也因為鈦酸鋰原子結構的些微改變而獲得改善。有鑑於在追求快速充放電性能時,導電度和鋰離子擴散能力須同時促進,因此論文第二部分提出一個結合高分子與還原性氣氛的改良式固態合成法,其合成的鈦酸鋰同時擁有多孔性結構、碳的導電網絡以及利於鋰離子擴散的結構,在5 C快速充放電之下能提供155 mAh/g的電容量(89%的鈦酸鋰理論電容, 175 mAh/g)且具有結構穩定性,在200圈循環測試仍能維持初始的電容量。
In the society that several alternative energy sources are developing, lithium ion batteries have being designed to meet the raising requirement of electric vehicle (EV) and back-up storage systems. Li4Ti5O12 is a promising anode material for both high-power and high-safety lithium-ion batteries (LIBs). Li4Ti5O12 possesses the advantages of high safety and long cycle life, due to robust spinel structure and no solid electrolyte interface (SEI) formation. However, Li4Ti5O12 is electron insulated. Hence, this study aims to improve the electron conductivity through atmosphere control and carbon-assistance to promote its high-rate performance.
Initially, the study probes into the effect of reductive atmosphere. Beyond the enhancement of electron conductivity, it is found that the lithium diffusion is also facilitated due to disorder structure. Furthermore, in view of that both lithium diffusivity and electron conductivity should be promoted for high rate capability, polymer-assisted solid-state method incorporated with reductive atmosphere is proposed. Porous structure, carbon network and disorder structure are synthesized under one-step synthesis, resulting in the outstanding electrochemical performance. The high-rate capacity of 5C reaches 155 mAh/g, 89% of theoretical value, and retained the initial value after 200 discharging/charging cycles.
1. K. E. Aifantis, S. A. Hackney and R. V. Kumar, High energy density lithium batteries: materials, engineering, applications, Wiley-VCH. (2010)
2. C. M. Hayner, X. Zhao and H. H. Kung, "Materials for Rechargeable Lithium-Ion Batteries," Annu. Rev. Chem. Biomol. Eng., 3 (2012) 445-471
3. M. Wakihara and O. Yamamoto, Lithium Ion Batteries: Fundamentals and Performance, Wiley-VCH. (1998)
4. K. Kariatsumari, H. Kume, H. Yomogita and P. Keys (2010). "The First Step is New Materials to Boost Capacity."
5. T. Ohzuku, A. Ueda and N. Yamamota, "Zero-Strain Insertion Material of Li[Lil/3Ti5/3]O4 for Rechargeable Lithium Cells," J. Electrochem. Soc., 142 5 (1995) 1431-1435
6. Y. R. Jhan and J. G. Duh, "Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density," Electrochim. Acta, 63 (2012) 9-15
7. B. Tian, H. Xiang, L. Zhang, Z. Li and H. Wang, "Niobium doped lithium titanate as a high rate anode material for Li-ion batteries," Electrochim. Acta, 55 (2010) 5453-5458
8. J. Wolfenstine, U. Lee and J. L. Allen, "Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere," J. Power Sources, 154 (2006) 287-289
9. S. Huang, Z. Wen, X. Zhu and X. Yang, "Research on Li4Ti5O12/CuxO Composite Anode Materials for Lithium-Ion Batteries," J. Electrochem. Soc., 152 7 (2005) A1301-A1305
10. H. G. Jung, S. T. Myung and C. S. Yoon, "Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries," Energy Environ. Sci., 4 (2011) 1345-1351
11. Y. S. Lin and J. G. Duh, "Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries," J. Power Sources, 196 (2011) 10698-10703
12. L. Kavan and M. Gra¨tzel, "Facile Synthesis of Nanocrystalline Li4Ti5O12 Spinel Exhibiting Fast Li Insertion," Electrochem. Solid-State Lett., 5 2 (2002) A39-A42
13. T. Yuan, R. Cai and Z. Shao, "Different Effect of the Atmospheres on the Phase Formation and Performance of Li4Ti5O12 Prepared from Ball-Milling-Assisted Solid-Phase Reaction with Pristine and Carbon-Precoated TiO2 as Starting Materials," J. Phys. Chem. C, 115 (2011) 4943-4952
14. C. Y. Lin and J. G. Duh, "Porous Li4Ti5O12 anode material synthesized by one-step solid state method for electrochemical properties enhancement," J. Alloys Compd., 509 (2011) 3682-3685
15. B. Li, C. Han, Y.-B. He, C. Yang, H. Du, Q.-H. Yang and F. Kang, "Facile synthesis of Li4Ti5O12/C composite with super rate performance," Energy Environ. Sci., 5 (2012) 9595-9602
16. C. Y. Lin, Y. R. Jhan and J. G. Duh, "Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material," J. Alloys Compd., 509 (2011) 6965–6968
17. B. Xu, D. Qian, Z. Wang and Y. S. Meng, "Recent progress in cathode materials research for advanced lithium ion batteries," Mater. Sci. Eng., R, 73 (2012) 51-65
18. J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries," Chem. Mater., 22 (2010) 587-603
19. H. Shiiba, M. Nakayama and M. Nogami, "Ionic conductivity of lithium in spinel-type Li4/3Ti5/3O4–LiMg1/2Ti3/2O4 solid-solution system," Solid State Ionics, 181 (2010) 994–1001
20. S. Scharner, W. Weppner and P. Schmid-Beurmann, "Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel," J. Electrochem. Soc., 146 3 (1999) 857-861
21. M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lützenkirchen-Hecht, R. Frahm and F. M. Mulder, "A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12," Adv. Mater., 18 (2006) 3169–3173
22. I. Belharouak, G. M. K. Jr. and K. Amine, "Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications," J. Power Sources, 196 (2011) 10344–10350
23. C. Y. Ouyang, Z. Y. Zhong and M. S. Lei, "ab initio studies of structural and electronic properties of Li4Ti5O12 spinel," Electrochem. Commun., 9 (2007) 1107–1112
24. C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher and M. M. Thackeray, "Studies of Mg-Substituted Li42xMgxTi5O12 Spinel Electrodes (0≦x≦1) for Lithium Batteries," J. Electrochem. Soc., 148 1 (2001) A102-A104
25. S. Huang, Z. Wen, X. Zhu and Z. Lin, "Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries," J. Power Sources, 165 (2007) 408–412
26. S. Huang, Z. Wen, X. Zhu and Z. Gu, "Preparation and electrochemical performance of Ag doped Li4Ti5O12," Electrochem. Commun., 6 (2004) 1093–1097
27. L. Cheng, X. L. Li, H. J. Liu, H. M. Xiong, P. W. Zhang and Y. Y. Xia, "Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation," J. Electrochem. Soc., 154 7 (2007) A692-A697
28. Y. Wang, H. Liu and K. Wang, "Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon," J. Mater. Chem., 19 (2009) 6789–6795
29. Y. R. Jhan and J. G. Duh, "Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction," J. Power Sources, 198 (2012) 294-297
30. Y. Qi, Y. Huang, D. Jia, S.-J. Bao and Z. P. Guo, "Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials," Electrochim. Acta, 54 (2009) 4772–4776
31. C. Jiang, M. Ichihara, I. Honma and H. Zhou, "Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode," Electrochim. Acta, 52 (2007) 6470–6475
32. E. M. Sorensen, S. J. Barry and H.-K. Jung, "Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties," Chem. Mater., 18 (2006) 482-489
33. S. Huang, Z. Wen, Z. Gu and X. Zhu, "Preparation and cycling performance of Al3+ and F- co-substituted compounds Li4AlxTi5−xFyO12−y," Electrochim. Acta, 50 (2005) 4057–4062
34. J. Wolfenstine and J. L. Allen, "Electrical conductivity and charge compensation in Ta doped Li4Ti5O12," J. Power Sources, 180 (2008) 582–585
35. K. S. Park, A. Benayad, D. J. Kang and S. G. Doo, "Nitridation-Driven Conductive Li4Ti5O12 for Lithium Ion Batteries," J. AM. CHEM. SOC., 130 (2008) 14930–14931
36. M. Inagaki, "Carbon coating for enhancing the functionalities of materials," Carbon, 50 (2012) 3247-3266
37. G. N. Zhu, C. X. Wang and Y. Y. Xia, "A Comprehensive Study of Effects of Carbon Coating on Li4Ti5O12 Anode Material for Lithium-Ion Batteries," J. Electrochem. Soc., 158 2 (2011) A102-A109
38. G. N. Zhu and H. J. Liu, "Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries," Energy Environ. Sci., 4 (2011) 4016-4022
39. X. Hu, Z. Lin and K. Yang, "Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction," Electrochim. Acta, 56 (2011) 5046–5053
40. L. Shen, H. Li and E. Uchaker, "General Strategy for Designing Core−Shell Nanostructured Materials for High-Power Lithium Ion Batteries," Nano Lett., 12 (2012) 5673-5678
41. K. Ariyoshi, R. Yamato and T. Ohzuku, "Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries," Electrochim. Acta, 51 (2005) 1125–1129
42. M. S. Song, A. Benayad, Y. M. Choi and K. S. Park, "Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity," Chem. Commun., 48 (2012) 516-518
43. H. Schneider, P. Maire and P. Novák, "Electrochemical and spectroscopic characterization of lithium titanate spinel Li4Ti5O12," Electrochim. Acta, 56 (2011) 9324-9328
44. R. B. Hadjean, J. Pierre and P. Ramos, "Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries," Chem. Rev., 110 (2010) 1278-1319
45. I. A. Leonidov, O. N. Leonidova and L. A. Perelyaeva, "Structure, Ionic Conduction, and Phase Transformations in Lithium Titanate Li4Ti5O12," Phys. Solid State, 45 11 (2003)
46. C. M. Julien, M. Massot and K. Zaghib, "Structural studies of Li4/3Me5/3O4 (Me=Ti, Mn) electrode materials: local structure and electrochemical aspects," J. Power Sources, 136 (2004) 72-79
47. M. Wagemaker, E. R. H. v. Eck and A. P. M. Kentgens, "Li-Ion Diffusion in the Equilibrium Nanomorphology of Spinel Li4+xTi5O12," J. Phys. Chem. B, 113 (2009) 224–230
48. E. Barsoukov, J. H. Kim and D. H. Kim, "Parametric analysis using impedance spectroscopy: relationship between material properties and battery performance," J. New Mater. Electrochem. Sys., 3 (2000) 303-310
49. N. Takami, A. Satoh and M. Hara, "Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries," J. Electrochem. Soc., 142 2 (1995) 371-378
50. H. Fang, L. Li and G. Li, "A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4," J. Power Sources, 167 (2007) 223–227
51. Y. C. Jin and J. G. Duh, "Nanostructured LiNi0.5Mn1.5O4 cathode material synthesized by polymer-assisted co-precipitation method with improved rate capability," Mater. Lett., 93 (2013) 77-80
52. Z. Zhu, F. Cheng and J. Chen, "Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites," J. Mater. Chem. A, 1 (2013) 9484-9490
53. Y.-B. He, B. Li, M. Liu, C. Zhang, W. Lv, C. Yang, J. Li, H. Du, B. Zhang, Q.-H. Yang, J.-K. Kim and F. Kang, "Gassing in Li4Ti5O12-based batteries and its remedy," Sci. Rep., 2 913 (2012) 1-9