簡易檢索 / 詳目顯示

研究生: 張承平
Chang, Cheng-Ping
論文名稱: 高效能甲醇重組式磷酸燃料電池系統
High Performance Reformed Methanol Phosphoric Acid Fuel Cell System
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員: 葉宗洸
Yeh, Tsung-Kuang
薛康琳
Hsueh, Kan-Lin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 磷酸燃料電池蒸發器甲醇部分氧化反應氧化性蒸氣重組反應系統整合
外文關鍵詞: Phosphoric acid fuel cell, Evaporator, Partial oxidation of methanol (POM), Oxidative steam reforming of methanol (OSRM), System integration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為解決燃料電池的燃料的攜帶問題,本研究採用甲醇重組式燃料電池的概念,將液態甲醇經由蒸發器再透過反應轉換成氫氣後導入電池作為燃料,為了能直接利用甲醇重組器所產生的氫氣及其餘產物,結合具有較佳抗一氧化碳能力且操作溫度接近重組器的磷酸燃料電池作為發電系統。本研究所使用的磷酸燃料電池質子交換膜為玻璃纖維/聚四氟乙烯複合膜。複合膜的概念為結合兩材料之特性,內層微米等級孔徑的玻璃纖維擁有很高(93%)的孔隙率,使其得以吸收足量之磷酸電解質而擁有良好的質子傳導能力;外層奈米孔徑的聚四氟乙烯薄膜透過物理夾和的方式構成一層緻密的防磷酸洩漏膜,單電池測試的功率密度最高可達614mW/cm2。
      本研究提出甲醇部分氧化重組反應(POM)、氧化性甲醇蒸氣重組反應(OSRM)兩類重組反應系統。POM反應為甲醇與氧氣反應產氫的過程,此過程為一放熱反應,可省去額外燃料電池系統中需要額外熱源的困擾,本研究中的銅錳鋅多元觸媒在相對低溫下(<200℃)進行POM反應即可擁有70~90%的甲醇轉換率與70~80%的氫氣轉換率。將操作在180℃的POM微型重組器所生成的所有氣體導入操作在140℃的玻璃纖維/聚四氟乙烯複合膜磷酸燃料電池的陽極中,陰極通入100sccm氧氣,可得132mW/cm2的最大功率密度。
      而在使用自身可達熱平衡的OSRM重組反應的系統中,首先以150℃的微型甲醇蒸發器將混合物反應物中的甲醇氣化並使雙氧水自分解生成氧氣和水,氧氣與水再於280℃的重組器中的銅鈀鈰鋅觸媒分別和甲醇進行重組反應,重組產物經由一除水裝置後進入140℃的玻璃纖維/聚四氟乙烯複合膜磷酸燃料電池的陽極中,陰極進料為100sccm氫氣,可得最高功率密度196mW/cm2。


    To overcome the portage issue of the fuel for fuel cells, reformed methanol fuel cell is chosen to be the electricity generation system of this study. In order to match the operating temperature of the methanol reformer and tolerate the small amount of carbon monoxide produced by reformer, phosphoric acid fuel cell (PAFC) is chosen to be the fuel cell system due to its high carbon monoxide tolerance and operating temperature (120~220℃). In this study, glass-microporous-fiber with polytetrafluoroethylene (GMF/PTFE) composite membrane is carried out. The composite membranes combine their advantages. The inner glass microporous fiber has large porosity (93%), which leads to high electrolyte content and high proton conductivity; while the outer films consists of nano-pores which can prevent phosphoric acid from leaking. For single cell test, the maximum power density achieved 614mW/cm2.
    Partial oxidation of methanol (POM) and oxidative steam reforming of methanol (OSRM) systems are applied in this study. The micro POM methanol reformer has a high (70~90%) methanol conversion rate and a high (70~80%) hydrogen selectivity at relatively low temperature (less then 200℃). For the integration test of the micro methanol reformer and GMF/PTFE phosphoric acid fuel cell, the cell performance operating at 140℃ achieves 132mW/cm2 power density by operating reformed gas from the 180℃ reformer as fuel and 100sccm oxygen as oxidant.
    In the system integration of OSRM reformer and GMF/PTFE PAFC, a micro-evaporator is installed in the front of the reformer. In the evaporator, methanol evaporates and hydrogen peroxide self-decomposes to oxygen and water. The mixture is then reacted with methanol into hydrogen with the aid of Cu/Pd/Ce/Zn catalyst. For the single cell test of the GMF/PTFE PAFC, the cell performance operating at 140℃ achieves 196mW/cm2 power density by operating reformed gas from the 280℃ reformer as fuel and 100sccm oxygen as oxidant.

    摘要 I Abstract III 致謝 V 總目錄 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 燃料電池簡介 2 1-3 燃料電池種類與原理 3 1-3-1 磷酸燃料電池(Phosphoric Acid Fuel Cell, PAFC) 4 1-3-2 質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC) 5 1-3-3 鹼性燃料電池(Alkaline Fuel Cell, AFC) 7 1-3-4 熔融碳酸鹽燃料電池(Molten Carbonate Fuel Cell, MCFC) 7 1-3-5 固體氧化物燃料電池(Solid Oxide Fuel Cell, SOFC) 8 1-3-6 直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC) 9 1-3-7 甲醇重組式燃料電池(Reformed Methanol Fuel Cell, RMFC) 10 1-4 研究動機 13 第二章 基本原理與文獻回顧 14 2-1 磷酸燃料電池構造 14 2-1-1 電流收集層與流道 15 2-1-2 氣體擴散層 16 2-1-3 觸媒層 16 2-1-4 質子交換膜 17 2-2 燃料電池理論 18 2-2-1 電化學熱力學 18 2-2-2 電化學動力學 19 2-3 電流收集層材料 22 2-3-1 石墨 22 2-3-2 金屬 23 2-4 磷酸燃料電池質子交換膜的研究 24 2-4-1 玻璃纖維與聚四氟乙烯複合膜 31 2-4-2 玻璃纖維與氧化石墨烯複合膜 33 2-5 氣體擴散層與觸媒層的研究 36 2-6 甲醇重組器之研究 38 2-6-1 甲醇部分氧化(POM)微型重組器 41 2-6-2氧化性甲醇蒸氣(OSRM)重組器 44 2-7 甲醇蒸發器的研究 46 2-8 微型除水流道裝置的研究 47 2-9 甲醇重組式燃料電池元件整合的研究 48 第三章 實驗方法 59 3-1 實驗流程 59 3-2 實驗藥品與設備 60 3-2-1 實驗藥品、耗材 60 3-2-2 實驗用氣體 60 3-2-3 實驗設備 60 3-2-4 分析儀器 61 3-3 磷酸燃料電池性能測試 61 3-3-1 氣體擴散層與觸媒層的製備 61 3-3-2 玻璃纖維與聚四氟乙烯複合膜製備 62 3-3-3 燃料電池測試 64 3-4 POM微型重組器-磷酸燃料電池系統整合 67 3-5微型蒸發器-OSRM重組器-GMF/PTFE磷酸燃料電池系統整合 68 3-5-1 第一套蒸發器-重組器-燃料電池系統 69 3-5-2 第二套蒸發器-重組器-燃料電池系統 71 3-5-3 第三套蒸發器-重組器-燃料電池系統 73 3-5-4 第四套蒸發器-重組器-燃料電池系統 74 第四章 結果與討論 75 4-1 磷酸燃料電池單電池測試 75 4-1-1 玻璃纖維與聚四氟乙烯複合膜單電池測試 75 4-1-2 玻璃纖維與聚四氟乙烯複合膜0.4V定電位長效測試 79 4-1-3 玻璃纖維與聚四氟乙烯複合膜反應面積放大測試 79 4-2 POM微型甲醇重組器與GMF/PTFE磷酸燃料電池的整合 81 4-3微型蒸發器-OSRM甲醇重組器-GMF/PTFE磷酸燃料電池的整合 83 4-3-1 第一套整合系統測試結果 83 4-3-2 第二套整合系統測試結果 87 4-3-3 第三套整合系統測試結果 90 4-3-4 第四套整合系統測試結果 94 4-4 各種陽極與陰極進料對磷酸燃料電池效能影響之比較 96 第五章 結論 100 第六章 未來展望 101 參考文獻 102

    [1] W. R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine, vol. 14, pp. 127-130, 1839.
    [2] J. Larminie and A. Dicks, Fuel cell systems explained, 2nd edition. Chichester, West Sussex: J. Wiley, 2003.
    [3] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, “Low Platinum Loading Electrodes for Polymer Electrolyte Fuel-Cells Fabricated Using Thermoplastic Ionomers,” Electrochimica Acta, vol. 40, pp. 355-363, Feb 1995.
    [4] W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, Q. Xin, “Pt based anode catalysts for direct ethanol fuel cells,” Applied Catalysis B: Environmental, vol. 46, pp. 273–285, 2003.
    [5] A. Boudghene Stambouli, E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy,” Renewable and Sustainable Energy Reviews, vol. 6, pp. 433-455, 2002.
    [6] L. Carrette, K. A. Friedrich and U. Stimming, “Fuel Cells – Fundamentals and Applications,” Fuel Cells, vol. 1, pp. 5-39, 2001.
    [7] K.-D. Kreuer, S. J. Paddison, E. Spohr, M. Schuster, “Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology,” Chemical Reviews, vol. 104, pp. 4637–4678, 2004.
    [8] A. Hermanna, T. Chaudhuria, P. Spagnol, “Bipolar plates for PEM fuel cells: A review,” International Journal of Hydrogen Energy, vol. 30, pp. 1297-1302, 2005.
    [9] P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, J. M. Moore, “New materials for polymer electrolyte membrane fuel cell current collectors,” Journal of Power Sources, vol. 80, pp. 235–241, 1999.
    [10] J. Wind, R. Spa¨h, W. Kaiser, G. Bo¨hm, “Metallic bipolar plates for PEM fuel cells,” Journal of Power Sources, vol. 105, pp. 256–260, 2002.
    [11] M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. Cao, “Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments,” Corrosion Science, vol. 46, pp. 1369–1380, 2004.
    [12] Y.J. Ren, C.L. Zeng, “Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process,” Journal of Power Sources, vol. 171, pp. 778–782, 2007.
    [13] H. Wang, M. A. Sweikart, J. A. Turner, “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cell,” Journal of Power Sources, vol. 115, pp. 243-251, 2003.
    [14] H. Wang, J. A. Turner, “Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, vol. 128, pp. 193-200, 2004.
    [15] M. Neergat, A.K. Shukla, “A high-performance phosphoric acid fuel cell,” Journal of Power Sources, vol. 102, pp. 317–321, 2001.
    [16] K. H. Yoon, B. D. Yang, “Preparation and characterization of matrix retaining electrolyte for a phosphoric acid fuel cell by non-volatile solvent, NMP,” Journal of Power Sources, vol. 124, pp. 47–51, 2003.
    [17] J. S. Wainright, J.-T. Wang, D. Weng, R. F. Savinell, and M. Litt, “Acid-doped polybenzimidazoles: a new polymer electrolyte,” Journal of the Electrochemical Society, vol. 142, no. 7, pp. L121–L123, 1995.
    [18] J.-T. Wang, R. F. Savinell, J. Wainright, M. Litt, and H. Yu, “A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte,” Electrochimica Acta, vol. 41, no. 2, pp. 193–197, 1996.
    [19] J. Kerres, A. Ullrich, F. Meier, and T. Häring, “Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells,” Solid State Ionics, vol. 125, no. 1, pp. 243–249, 1999.
    [20] D. J. Jones, J. Rozière “Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications,” Journal of Membrane Science, vol. 185, pp. 41-58, 2001.
    [21] Y.-L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, “Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells,” Journal of the Electrochemical Society, vol. 151, no. 1, pp. A8–A16, 2004.
    [22] J. Lobato, P. Canizares, M. A. Rodrigo, D. Úbeda, F. J. Pinar, “A novel titanium PBI-based composite membrane for high temperature PEMFCs,” Journal of Membrane Science, vol. 369, pp. 105–111, 2011.
    [23] J. Lobato, P. Canizares, M. A. Rodrigo, D. Úbeda, F. J. Pinar, “Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes,” Journal of Power Sources, vol. 196, pp. 8265–8271, 2011.
    [24] F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, J. Lobato, “Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount,” RSC Advances, vol. 2, pp. 1547–1556, 2012.
    [25] F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, J. Lobato, “Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes,” Journal of Power Sources, vol. 274, pp. 177-185, 2015.
    [26] R. H. He, Q. Li, G. Xiao, N.J. Bjerrum, “Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors,” Journal of Membrane Science, vol. 226, vol. 169–184, 2003.
    [27] P. Staiti, M. Minutoli, S. Hocevar, “Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application,” Journal of Power Sources, vol. 90, pp. 231–235, 2000.
    [28] S. Wang, F. Dong, and Z. Li, “Proton-conducting membrane preparation based on SiO2-riveted phosphotungstic acid and poly (2,5-benzimidazole) via direct casting method and its durability," Journal of Materials Science, vol. 47, pp. 4743-4749, 2012.
    [29] P. Gomez-Romero, J. A. Asensio, S. Borros, “Hybrid proton-conducting membranes for polymer electrolyte fuel cells Phosphomolybdic acid doped poly(2,5-benzimidazole)—(ABPBI-H3PMo12O40),” Electrochimica Acta, vol. 50, pp. 4715–4720, 2005.
    [30] S.M.J. Zaidi, “Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate,” Electrochimica Acta, vol. 50, pp. 4771–4777, 2005.
    [31] L. C. Jheng, C. Y. Huang, and S. L. C. Hsu, "Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells," International Journal of Hydrogen Energy, vol.38, pp. 1524-1534, 2013.
    [32] R. Zhang, Z. Shi, Y. Liu, and J. Yin, "Synthesis and characterization of polybenzimidazole–nanodiamond hybrids via in situ polymerization method," Journal of Applied Polymer Science, vol. 125, pp. 3191-3199, 2012.
    [33] Q. Tang, K. Huang, G. Qian, and B. C. Benicewicz, "Phosphoric acid-imbibed three-dimensional polyacrylamide/poly(vinyl alcohol) hydrogel as a new class of high-temperature proton exchange membrane," Journal of Power Sources, vol. 229, pp. 36-41, 2013.
    [34] A. S. Gruzd, E. S. Trofimchuk, N. I. Nikonorova, E. A. Nesterova, I. B. Meshkov, M. O. Gallyamov, et al., "Novel polyolefin/silicon dioxide/H3PO4 composite membranes with spatially heterogeneous structure for phosphoric acid fuel cell," International Journal of Hydrogen Energy, vol. 38, pp. 4132-4143, 2013.
    [35] 呂佳蓮,「具玻璃纖維與聚四氟乙烯複合多孔隔膜之高效能磷酸燃料電池」,國立清華大學碩士論文,103年。
    [36] H. Bi, K. Yin, X. Xie, Y. Zhou, N. Wan, F. Xu, F. Banhart, L. Sun, R. S. Ruoff, “Low Temperature Casting of Graphene with High Compressive Strength,” Advanced Material, vol. 24, pp. 5124-5129, 2012.
    [37] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano, vol. 2, pp. 463-470, 2008.
    [38] 邱裕婷,「氧化石墨烯修飾之多孔玻璃纖維應用於燃料電池之酸鹼複合式質子交換膜」,國立清華大學碩士論文,105年。
    [39] K. Mitsuda, H. Shiota, H. Kimura, T. Murahashi, “Influence of the temperature of heat treatment on phosphoric acid fuel cell cathodes,” Journal of Material Science, vol. 26, pp. 6436-6442, 1991.
    [40] D.S. Chan, C.C. Wan, “Influence of PTFE dispersion in the catalyst layer of porous gas-diffusion electrodes for phosphoric acid fuel cells,” Journal of Power Sources, vol. 50, pp. 163-176, 1994.
    [41] M. Mamlouk, K. Scott, “The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell,” International Journal of Hydrogen Energy, vol. 35, pp. 784-793, 2010.
    [42] A. D. Modestov, M. R. Tarasevich, V. Y. Filimonov, A. Y. Leykin, “Influence of catalyst layer binder on Catalyst utilization and performance of fuel cell with polybenzimidazole- H3PO4 membrane,” Journal of Electrochemical Society, vol. 156, pp. B650-B656, 2009.
    [43] H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B. G. Pollet, “Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer,” International Journal of Hydrogen Energy, vol. 38, pp. 11370-11378, 2013.
    [44] J.-H. Kim, H.-J. Kim, T.-H. Lim, H.-I. Lee, “Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer,” Journal of Power Sources, vol. 170, pp. 275–280, 2007.
    [45] Z. Qi, A. Kaufman, “Improvement of water management by a microporous sublayer for PEM fuel cells,” Journal of Power Sources, vol. 109, pp. 38-46, 2002.
    [46] L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth, “Diffusion layer parameters influencing optimal fuel cell performance,” Journal of Power Sources, vol. 86, pp. 250–254, 2000.
    [47] S. Park, J.-W. Lee, B. N. Popov, “Effect of carbon loading in microporous layer on PEM fuel cell performance,” Journal of Power Sources, vol. 163, pp. 357–363, 2006.
    [48] J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, “PBI-based polymer electrolyte membranes fuel cells: Temperature effects on cell performance and catalyst stability,” Electrochimica Acta, vol. 52, pp. 3910–3920, 2007.
    [49] X. Zhao, W. Yuan, Q. Wu, H. Sun, Z. Luo, H. Fu, “High-temperature passive direct methanol fuel cells operating with concentrated fuels,” Journal of Power Sources, vol. 273, pp. 517–521, 2015.
    [50] S. Martin, Q. Li, T. Steenberg, J.O. Jensen, “Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells,” Journal of Power Sources, vol. 272, pp. 559-566, 2014.
    [51] S. Martin, Q. Li, J.O. Jensen, “Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes,” Journal of Power Sources, vol. 293, pp. 51-56, 2015.
    [52] M. P. Harolda, B. Naira, G. Kolios, “Hydrogen generation in a Pd membrane fuel processor: assessment of methanol-based reaction systems,” Chemical Engineering Science, vol. 58, pp. 2551 – 2571, 2003.
    [53] J. Agrell, H. Birgersson, M. Boutonnet, “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation,” Journal of Power Sources, vol. 106, pp. 249-257, 2002.
    [54] J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3,” Journal of Catalysis, vol. 219, pp. 389–403, 2003.
    [55] Z. Wang, J. Xi, W. Wang, G. Lu, “Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts,” Journal of Molecular Catalysis A: Chemical, vol. 191, pp. 123-134, 2003.
    [56] B. Park, S. Kwon, “Compact design of oxidative steam reforming of methanol assisted by blending hydrogen peroxide,” International Journal of Hydrogen Energy, vol. 40, pp. 12697-12704, 2015.
    [57] H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlögl, R. Schomäcker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst,” Applied Catalysis A: General, vol. 259, pp. 83–94, 2004.
    [58] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, “Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation,” Applied Catalysis A: General, vol. 303 , pp. 62-71, 2006.
    [59] Y.-F. Han, M. Kinne, R.-J. Behm, “Selective oxidation of CO on Ru/γ-Al2O3 in methanol reformate at low temperatures,” Applied Catalysis B: Environmental, vol. 52, pp. 123-134, 2004.
    [60] H.-S. Wang, K.-Y. Huang, Y.-J. Huang, Y.-C. Su, F.-G. Tseng, “A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield,” Applied Energy, vol. 138, pp. 21–30, 2015.
    [61] H.-S. Wang, C.-P. Chang, Y.-J. Huang, Y.-C. Su, F.-G. Tseng, “A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC),” Energy, 2017.
    [62] S. Sá, H. Silva, L. Brandão, J. M. Sousa, A. Mendes, “Catalysts for methanol steam reforming—A review,” Applied Catalysis B: Environmental, vol. 99, p. 43–57, 2010.
    [63] 溫祖承,「研發甲醇-過氧化氫氧化蒸氣重組製氫之研究」,國立清華大學碩士論文,105年。
    [64] 劉鈞,「濃度梯度觸媒應用於甲醇重組反應器」,國立清華大學碩士論文,105年。
    [65] 許昶逸,「甲醇雙氧水混合蒸發器應用於後端甲醇重組反應」,國立清華大學碩士論文,105年。
    [66] 傅詩貽,「基體化毛細管與微漸擴流道進料腔之甲醇微型重組器」,國立清華大學碩士論文,103年。
    [67] T. A. Zawodzinski, Jr., M. Neeman, L. O. Sillerud, S. Cottesfeld, “Determination of water dlffusion coefficients in perfluorosulfonate ionomeric membranes,” The Journal of Physical Chemistry, vol. 95, pp. 6040–6044, 1991.
    [68] T. J.P. Freire, E. R. Gonzalez, “Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells,” Journal of Electroanalytical Chemistry, vol. 503, pp. 57–68, 2001.
    [69] D. J. Burnett, A. R. Garcia, F. Thielmann, “Measuring moisture sorption and diffusion kinetics on proton exchange membranes using a gravimetric vapor sorption apparatus,” Journal of Power Sources, vol. 160, pp. 426–430, 2006.
    [70] Q. Li, H. A. Hjuler, N. J. Bjerrum, “Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications,” Journal of Applied Electrochemistry, vol. 31, pp. 773-779, 2001.
    [71] K. Wippermann, C. Wannek, H.-F. Oetjen, J. Mergel, W. Lehnert, “Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters,” Journal of Power Sources, vol. 195, pp. 2806–2809, 2010.
    [72] C.-Y. Chen, W.-H. Lai, “Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell,” Journal of Power Sources, vol. 195, pp. 7152–7159, 2010.
    [73] H.-C. Peng, P.-H. Chen, H.-W. Chen, C.-C. Chieng, T.-K. Yeh, C. Pan, F.-G. Tseng, “Passive cathodic water/air management device for micro-direct methanol fuel cells,” Journal of Power Sources, vol. 195, pp. 7349–7358, 2010.
    [74] A. Lotric, M. Sekavcnik, S. Hocevar, “Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications,” Journal of Power Sources, vol. 270, pp. 166-182, 2014.
    [75] C. Pan, R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, H. A. Hjulmand, A. B. Jensen, “Integration of high temperature PEM fuel cells with a methanol reformer,” Journal of Power Sources, vol. 145, pp. 392–398, 2005.
    [76] F. Weng, C.-K. Cheng, K.-C. Chen, “Hydrogen production of two-stage temperature steam reformer integrated with PBI membrane fuel cells to optimize thermal management,” International Journal of Hydrogen Energy, vol. 38, pp. 6059-6064, 2013.
    [77] G. Avgouropoulos, J. Papavasiliou, M. K. Daletou, J. K. Kallitsis, T. Ioannides, S. Neophytides, “Reforming methanol to electricity in a high temperature PEM fuel cell,” Applied Catalysis B: Environmental, vol. 90, pp. 628–632, 2009.
    [78] G. Avgouropoulos, S. Neophytides, “Performance of internal reforming methanol fuel cell under various methanol/water concentrations,” Journal of Applied Electrochemistry, vol. 42, pp. 719-726, 2012.
    [79] G. Avgouropoulos, J. Papavasiliou, T. Ioannides, S. Neophytides, “Insights on the effective incorporation of a foam-based methanol reformer in a high temperature polymer electrolyte membrane fuel cell,” Journal of Power Sources, vol. 296, pp. 335-343, 2015.
    [80] P. Ribeirinha, I. Alves, F. Vidal Vazquez, G. Schuller, M. Boaventura, A. Mendes, “Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell,” Energy, vol. 120, pp. 468-477, 2017.
    [81] P. Ribeirinha, G. Schuller, M. Boaventura, A. Mendes, “Synergetic integration of a methanol steam reforming cell with a high temperature polymer electrolyte fuel cell,” International Journal of Hydrogen Energy, vol. 42, vol. 13902-13912, 2017.
    [82] T. Okamoto, S. Nakamura. “Thermal endurance, electrical insulating, and mechanical properties of hybrid made with poly(dimethylsiloxane) and tetraethoxysilane,” Japanese Journal of Applied Physics, vol 47, pp. 521-526, 2008.
    [83] S. S. Araya, I. F. Grigoras, F. Zhou, S. J. Andreasen, S. K. Kær, “Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate,” International Journal of Hydrogen Energy, vol. 39, pp. 13902-13912, 2014.
    [84] M. Boaventura, I. Alves, P. Ribeirinha, A. Mendes, “The influence of impurities in high temperature polymer electrolyte membrane fuel cells performance,” International Journal of Hydrogen Energy, vol. 41, pp. 19771-19780, 2016.
    [85] S. Søndergaard, L.N. Cleemann, J.O. Jensen, N.J. Bjerrum, “Influence of carbon monoxide on the cathode in high-temperature polymer electrolyte membrane fuel cells,” International Journal of Hydrogen Energy, vol. 42, pp. 3309-3315, 2017.
    [86] S. K. Das, A. Reis, K.J. Berry, “Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell,” Journal of Power Sources, vol. 193, pp. 691–698, 2009.

    QR CODE