簡易檢索 / 詳目顯示

研究生: 呂君章
Lu, Chun Chang
論文名稱: 先進金氧半電晶體之界面與邊緣缺陷分佈量測及可靠度分析研究
Detection of interface and bulk trap distribution and reliability analysis for advanced MOSFET devices
指導教授: 張廖貴術
Chang-Liao, Kuei Shu
口試委員: 趙天生
Chao, Tien Sheng
劉致為
Liu, Cheewee
楊文祿
Yang, Wen Luh
吳永俊
Wu, Yung Chun
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 119
中文關鍵詞: 電荷汲引界面缺陷通道熱載子缺陷分佈可靠度
外文關鍵詞: charge-pumping, interface trap, channel-hot-carrier, trap profile, reliability
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體工業接近傳統矽互補式金屬氧化物半導體(CMOS)的微縮極限,在未來引入新材料和創新的元件結構已是必然趨勢。高介電係數(high-k)材料已被提出,以取代傳統的二氧化矽作為金氧半元件的閘極介電層。高遷移率的材料也被認為將取代矽通道以實現更高的驅動電流和開關速度。鍺作為通道材料特別引起廣大的興趣,因為其具有較高的電洞和電子遷移率。然而,其界面特性和延伸的電荷捕捉問題已經被提出會嚴重地影響高介電係數金氧半元件的電特性。因此,提供一個準確和快速的測量界面陷阱密度和邊緣陷阱分佈的方法被認為是一個值得研究的課題。在本文中提出了數個基於電荷汲引(charge pumping)原理的缺陷量測技術,並針對測量結果作深入的探討。結合動態汲極偏壓的改良式變頻電荷汲引技術在本文中被提出,並用以量測在高介電係數電晶體缺陷的空間分佈。由通道熱載子電應力以及定電壓電應力所引致的缺陷增生亦在本文中被比較和討論。
    在另一個研究主題中,一個不中斷電荷汲引量測(SSCP)技術被提出,並在不中斷電應力的情況下來量測電應力所引致的缺陷增生。實驗結果顯示SSCP在不中斷電應力所量測到的缺陷增生明顯的比傳統方法要高許多。此差異是由於傳統方法在量測時中斷電應力所造成的回復現象所導致。不同頻率電應力下所引致的臨界電壓飄移及界面缺陷增生也一起被量測討論;兩者都只與總累積的電應力時間有關,而與脈衝波的頻率和關閉時間無關。
    在最後的研究中,ZrO2與HfON為介電層的p型電晶體元件,其界面缺陷密度、邊緣缺陷密度和電應力引致的缺陷增生被量測並比較。實驗結果顯示,ZrO2元件和HfON元件相比,具有較高的界面陷阱密度,但較低的邊緣陷阱密度;這意味著ZrO2元件具有較差的Ge/dielectric界面,但高品質的介電層特性。相較於HfON元件,ZrO2元件的可靠性提高可以歸因於其高品質的介電層擁有較低的原生邊緣陷阱密度,因此大大的抑制在介電層中陷阱的電荷捕捉行為。


    As the semiconductor industry approaches the limits of traditional silicon complementary metal-oxide-semiconductor (CMOS) scaling, introduction of novel materials and innovative device structures has become necessary for the future of CMOS. High dielectric constant (high-k) material has been proposed to replace the conventional silicon dioxide as gate dielectrics of MOS devices. High mobility materials are also being considered to replace Si in the channel to achieve higher drive currents and switching speeds. Ge has particularly become of great interest as a channel material, owing to its high bulk hole and electron mobilities. However, the characteristic and extent of charge trapping in the interfacial layer between gate dielectric and silicon have been reported to affect strongly the electrical characteristics of high-k gated MOS devices. Hence, providing an accurate and quick measurement for density and distribution of interface and bulk traps is believed to be a valuable research topic. This work proposes several measurement techniques based on the principle of charge pumping (CP) and provides some discussion in depth for measurement results. A modified CP technique with dynamic drain bias and various gate pulse frequencies is proposed to characterize the distribution profiles of trap generation induced by channel-hot-carrier stress in MOSFETs with high-k gate stack. With dynamic drain biases, the drain depletion region during accumulation can be modulated. Hence, the trap distribution with respect to both dielectric depth and channel location can be characterized as well. The trap generation caused by channel-hot-carrier and constant voltage stresses is also compared. Results indicate that the generation of border trap induced by CVS is small and random distributed though whole channel, while that induced by CHC stress is large and localized around the gate-edge region inside the high-k dielectric.
    In another study, a stress-and-sense charge pumping (SSCP) technique is proposed to measure the stress induced interface trap (ΔNit) in real time evolution without stress interruption. Results show that the ΔNit measured by this SSCP technique is much higher than that measured by the conventional method. This difference is resulted from the recovery induced by stress interruption during the sensing measurements. The ΔNit measured by SSCP method after interruption is approximately equal to that by the conventional one. The stress induced threshold voltage shift (ΔVth) and ΔNit under varies stress frequencies and duty cycles are also measured. The ΔVth seems to depend on the total stress time of stress pulse only. The ΔNit measured by SSCP with different frequencies and duty cycles are similar. The ΔNit also depends on the total stress time of stress pulse, but not the off time during the non-stress half cycle.
    In the last study, the interface trap density, bulk trap density and stress induced trap generation of Ge-pMOSFETs with ZrO2 and HfON dielectrics are extracted and compared by CP technique with short transition time and various frequencies. Results show that ZrO2 device has higher interface trap density but lower bulk trap density than HfON device, which implies that ZrO2 device has inferior Ge/dielectric interface but high quality dielectric bulk. The improved reliability characteristics in ZrO2 device can be attributed to the low preexisting bulk trap density which greatly suppress charge trapping in the dielectric bulk.

    摘要 i Abstract ii 致謝 iv Contents vi Table Captions viii Figure Captions ix Chapter 1 Introduction 1 1.1 History of Semiconductor Devices 1 1.2 General Background 2 1.2.1 Requirements for Integration of High-k Gate Dielectrics 2 1.2.2 Hafnium-based High-k Gate Dielectrics 2 1.2.3 Electrical Requirements for High-k Gate Dielectrics in Future CMOS Technologies 3 1.2.4 Requirements for Integration of High Mobility Materials 4 1.2.5 Characteristics of Ge and Ge MOSFETs 4 1.3 Various Trapped Charges in MOS Structure 5 1.3.1 Interface Trapped Charge 5 1.3.2 Fixed Oxide Charge 7 1.3.3 Oxide Trapped Charge 7 1.4 Review of previous charge pumping techniques 8 1.5 Outline of This Dissertation 9 Chapter 2 Measurement Details of Charge Pumping Technique 15 2.1 Charge Pumping Technique 15 2.1.1 Phenomenon and Principle of Charge Pumping 15 2.1.2 Various Charge Pumping Method 19 2.2 Correction for Charge Pumping Current 21 2.3 Energy distribution of Interface Traps in MOSFET with High-k Gate Dielectric by Charge-Pumping Technique 22 2.4 Depth Profiling of Border Traps in MOSFET with High-k Gate Dielectric by Charge-Pumping Technique 24 2.5 Lateral profiling of Interface Traps by Charge-Pumping Technique with Dynamic Drain Biases 28 2.6 Summary 28 Chapter 3 Profiling of Trap Distributions along Channel and Gate Dielectric by a Modified Charge Pumping Technique 44 3.1 Introduction 44 3.2 Devices and Measurement 46 3.3 Correction for Charge Pumping Current 46 3.3.1 Fowler-Nordheim Leakage Correction 46 3.3.2 Gate-Induced-Drain-Leakage Correction 47 3.4 Simultaneous Profiling of Trap Distributions along Channel and Gate Dielectric 49 3.5 Reliability Study by CP with Different Gate Voltage Swings 51 3.6 Conclusions 52 Chapter 4 Detection of Stress-Induced Interface Trap Generation in Real Time by Stress-and-Sense Charge Pumping Technique 66 4.1 Introduction 66 4.2 Devices and Measurement 68 4.3 Gate Leakage and Geometrical Component 68 4.4 Comparison between SSCP and Conventional CP methods 69 4.5 Recovery Induced by Stress Interruption 69 4.6 Stress Frequency and Duty Cycles on Recovery 71 4.7 Conclusions 73 Chapter 5 Electrical and Reliability Characteristics in Ge-pMOSFET with ZrO2 and HfON Gate Dielectrics 84 5.1 Introduction 84 5.2 Device Fabrication and Experimental Details 86 5.3 TEM Images and I-V Characteristics for Ge MOSFETs with HfON and ZrO2 High-k Dielectrics 86 5.4 Reliability Study with CP Technique: Constant Voltage Stress 88 5.5 Reliability Study with CP Technique: Channel Hot Carrier Stress 90 5.6 Conclusions 91 Chapter 6 Conclusions and Suggestions 102 6.1 Conclusions 102 6.2 Suggestions for Future Work 103 References 105 Publication List 116 Journal Articles: 116 Conference papers: 117

    [1] G. E. Moore, “Cramming more components onto integrated circuits”, Electronics, vol. 38, pp. 114, 1965.
    [2] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-5275, 2001.
    [3] K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, “Effect of Hf metal predeposition on the properties of sputtered HfO2/Hf stacked gate dielectrics,” Appl. Phys. Lett., vol. 81, pp. 2053-2055, 2002.
    [4] M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, A. Shanware, and L. Colombo, “Application of HfSiON as a gate dielectric material,” Appl. Phys. Lett., vol. 80, pp. 3183-3185, 2002.
    [5] C. S. Kang, H.-J. Cho, R. Choi, Y. H. Kim, C. Y. Kang, S. J. Rhee, C. Choi, M. S. Akbar, and J. C. Lee, “The electrical and material characterization of Hafnium oxynitride gate dielectric with TaN-gate electrode,” IEEE Trans. Electron Devices, vol. 51, pp. 220-227, 2004.
    [6] X. Wang, J. Liu, F. Zhu, N. Yamada, and D. L. Kwong, “A simple approach to fabrication of high-quality HfSiON gate dielectric with improved nMOSFET performances,” IEEE Trans. Electron Devices, vol. 51, pp. 1798-1804, 2004.
    [7] X. Yu, C. Zhu, M. F. Li, A. Chin, M. B. Yu, A. Y. Du, and D. L. Kwong, “Mobility enhancement in TaN metal-gate MOSFETs using tantalum incorporated HfO2 gate dielectric,” IEEE Electron Device Lett., vol. 25, pp. 501-503, 2004.
    [8] C. S. Park, B. J. Cho, and D. L. Kwong, “MOS characteristics of synthesized HfAlON-HfO2 stack uaing AlN-HfO2,” IEEE Electron Device Lett., vol. 25, pp. 619-621, 2004.
    [9] A. Paskaleva, A. J. Bauer, M. Lemberger, and S. Zurcher, “Different current conduction mechanisms through thin high-k HfxTiySizO films due to the varying Hf to Ti ratio,” J. Appl. Phys., vol. 95, pp. 5583-5590, 2004.
    [10] W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson, T. Furukawa, “HfO2 and HfAlO for CMOS: thermal stability and current transport,” in IEDM Tech. Dig., pp. 463–466, 2001.
    [11] C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam, W. J. Taylor, J. M. Grant, L. G. Dip, D. H. Triyoso, R. I. Hegde, D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. S. Rai, E. A. Hebert, H.-H. Tseng, S. G. H. Anderson, B. E. White, and P. J. Tobin, “Fermi-level pinning at the polysilicon/metal oxide interface-Part II,” IEEE Trans. Electron Devices, vol. 51, no. 6, pp. 978–984, Jun. 2004.
    [12] W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, “Charge trapping in ultrathin hafnium oxide,” IEEE Electron Device Lett., vol. 23, no. 10, pp. 597–599, Oct. 2002.
    [13] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, “Charge trapping in high-k gate dielectric stacks,” in IEDM Tech. Dig., pp. 517–520, 2002.
    [14] S. Zafar, A. Kumar, E. Gusev, and E. Cartier, “Threshold voltage instabilities in high-k gate dielectric stacks,” IEEE Trans. Device Mater. Rel., vol. 5, no. 1, Mar. 2005.
    [15] M. Houssa, S. D. Gendt, J. L. Autran, G. Groeseneken, and M. M. Heyns, “Detrimental impact of hydrogen on negative bias temperature instabilities in HfO2-based pMOSFETs,” in Symp. VLSI Tech. Dig., pp. 212-213, 2004.
    [16] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-k insulator: The role of remote phonon scattering,” J. Appl. Phys., vol. 90, pp. 4587–4608, 2001.
    [17] W. Zhu, J.-P. Han, and T. P. Ma, “Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics,” IEEE Trans. Electron Devices, vol. 51, no. 1, pp. 98–105, Jan. 2004.
    [18] D. K. Schroder, and J. A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing,” J. Appl. Phys., vol. 94, no. 1, pp. 1–18, 2003.
    [19] C. W. Chen, J. Y. Tzeng, C. T. Chung, H. P. Chien, C. H. Chien and G. L. Luo, "High-performance germanium p- and n-MOSFETs with NiGe source/drain," IEEE Trans. Electron Devices, vol. 61, pp. 2656-2661, Aug. 2014.
    [20] Q. C. Zhang, J. D. Huang, N. Wu, G. X. Chen, M. H. Hong, L. K. Bera and C. X. Zhu, "Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation," IEEE Electron Device Lett., vol. 27, pp. 728-730, Sep. 2006.
    [21] E. P. Gusev, H. Shang, M. Copel, M. Grilbeyuk, C. D’Emic, P. Kozlowski, T. Zabel, “Microstructure and thermal stability of HfO2 gate dielectric deposited on Ge(100)”, App. Phys. Lett., vol. 85, pp. 2334-2337, 2004.
    [22] C. O. Chui, S. Ramanathan, B. B. Triplet, P. C. McIntyre, K. C. Saraswat,“Germanium MOS capacitors incorporating ultrathin High-K gate dielectric”, IEEE Elec. Dev. Lett., vol.23, pp. 473-476, 2002.
    [23] S. Iwauchi, T. Tanaka, “Interface properties of Al2O3-Ge structure and characteristics of Al2O3-Ge MOS transistors”, Jpn. J. Appl. Phys., vol.10, pp. 260-265, 1971.
    [24] D. S. Yu, K. C. Chiang, C. F. Cheng, A. Chin, C. Zhu, M. F. Li, D-L. Kwong,“Fully silicided NiSi:Hf-LaAlO3/SC-GOI n-MOSFETs with high electron mobility”, IEEE Elec. Dev. Lett., vol.25, pp. 559-562, 2004.
    [25] H. L. Shang, H. Okorn-Schmidt, K. K. Chan, M. Copel, J. A. Ott, P. M. Kozlowski, S. E. Steen, S. A. Cordes, H.-S. P. Wong, E. C. Jones, and W. E. Haensch, “High mobility p-Channel germanium MOSFETs with a thin Geoxynitride gate dielectric”, IEDM Tech. Dig., pp.441–444, 2002.
    [26] H. Shang, K-L. Lee, P. Kozlowski, C. D’emic, I. Babich, E. Sikorski, M. Ieong, H.-S. P. Wong, K. Guarini, W. Haensch, “Self-aligned n-channel germanium MOSFETs with a thin Geoxynitride gate dielectric and tungsten gate”, IEEE Elec. Dev. Lett., vol.25, pp. 135-138, 2004.
    [27] S. J. Whang, S. J. Lee, F. Gao, N. Wu, C. X. Zhu, J. S. Pan, L. J. Tang, D. L. Kwong, “Germanium p- & n-MOSFETs fabricated with novel surface passivation (plasma-PH/sub 3/ and thin AlN) and TaN/HfO/sub 2/ gate stack”, IEDM Tech. Dig., pp. 307-310, 2004.
    [28] P. V. Gray, and D. M. Brown, “Density of SiO2-Si interface states,” Appl. Phys. Lett., vol. 8, no. 2, pp. 31-33, 1966.
    [29] S. M. Sze, “Semiconductor devices, physics and technology,” John Wiley & Sons, 1985.
    [30] Y. Taur, and T. K. Ning, “Fundamentals of modern VLSI devices,” Cambridge University Press, 1998.
    [31] J. S. Brugler, and P. G. A. Jespers, “Charge pumping in MOS devices,” IEEE Trans. Electron Devices, vol. ED-16, pp. 297-302, 1969.
    [32] G. V. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker, “A Reliable Approach to Charge Pumping Measurement in MOS Transistors,” IEEE Trans. Electron Devices, ED-31, pp.42-53, Jan. 1984.
    [33] A. B. M. Elliot, “The use of charge pumping current to measure surface state densities in MOS Transistors,” Solid-State Electron., vol. 19, pp. 241-247, Mar. 1976.
    [34] R. A. Wachnik and J. R. Lowney, “A model for the charge-pumping current based on small rectangular voltage pulses,” Solid-State Electron., vol. 29, pp. 447-460, Apr. 1986.
    [35] W. L. Tseng, “A new charge pumping method of measuring Si-SiO2 interface states,” J. Appl. Phys., vol. 62, pp. 591-599, July 1987.
    [36] N. S. Saks, and M. G. Ancona, “Determination of interface trap capture cross sections using three-level charge pumping,” IEEE Electron Device Lett., vol. 11, pp. 339-341, Aug. 1990.
    [37] J. P. Han, E. M. Vogel, E. P. Gusev, C. D’Emic, C. A. Richter, D. W. Heh, and J. S. Suehle, “Energy Distribution of Interface Traps in High-K Gated MOSFETs,” in Symp. VLSI Tech. Dig., 2003, pp. 161-162.
    [38] G. W. Lee, J. H. Lee, H. W. Lee, M. K. Park, D. G. Kang, and H. K. Toun, “Trap evaluations of metal/oxide/silicon field-effect transistors with high-k gate dielectric using charge pumping method,” Appl. Phys. Lett., vol. 81, no. 11, pp. 2050-2052, Sept. 2002.
    [39] W. Chen, A. Balasinski, and T. P. Ma, “Lateral profiling of oxide charge and interface traps near MOSFET junctions,” IEEE Trans. Electron Devices, vol. 40, pp. 187-196, Jan. 1993.
    [40] M. G. Ancona, N. S. Saks, and D. McCarthy, “Lateral distribution of hot-carrier-induced interface traps in MOSFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 2221-2228, Dec. 1988.
    [41] M. Tsuchiaki, H. Hara, T. Morimoto, and H. Iwai, “A new charge pumping method for determining the spatial distribution of hot-carrier-induced fixed charge in p-MOSFET’s,” IEEE Trans. Electron Devices, vol. 40, pp. 1768-1779, Oct. 1993.
    [42] F. P. Heimann and G. Warfield, “The effect of oxide traps on MOS capacitance,” IEEE Trans. Electron Devices, vol. ED-12, pp.167-178, 1964.
    [43] M. Declercq, and P. Jespers, “Analysis of interface properties in MOS transistors by means of charge pumping measurements,” Rev. HF, Acta. Tech. Belg., vol. 9, pp. 244-244, 1974.
    [44] R. E. Paulsen and M. H. White, “Theory and Application of Charge Pumping for the Characterization of Si-SiO2 Interface and Near-Interface Oxide Traps,” IEEE Trans. Electron Devices, vol. 41, pp. 1213-1216, 1994.
    [45] R. E. Paulsen, R. R. Siergiej, M. L. French, and M. H. White, “Observation of Near-Interface Oxide Traps with the Charge-Pumping Technique,” IEEE Electric Device Lett., vol. 13, pp. 627-629, Dec., 1992.
    [46] Y. Maneglia and D. Bauza, “Extraction of slow trap concentration profiles in metal-oxide-semiconductor transistors using the charge pumping method,” J. Appl. Phys., vol. 79, pp. 4187–4192, 1996.
    [47] P. J. McWhorter, and P. S. Winokur, “Simple technique for separating the effects of interface traps and trapped oxide charge in metal-oxide-semiconductor transistor,” Appl. Phys. Lett., vol. 48, no. 2, pp. 133-135, Jan. 1986.
    [48] K. T. San, and T. P. Ma, “Determination of trapped oxide charge in flash EPROM’s and MOSFET’s with thin oxides,” IEEE Electron Device Lett., vol. 13, pp. 439-441, Aug. 1992.
    [49] C. Chen, and T. P. Ma, “Direct lateral profiling of hot-carrier-induced oxide charge and interface traps in thin gate MOSFET’s,” IEEE Trans. Electron Devices, vol. 45, pp. 512-520, Feb. 1998.
    [50] J. Bosch, Ph.D. thesis, Tech. Phys. Lab., Groningen State University, 1979.
    [51] D. K. Schroder, “Semiconductor material and device characterization,” John wiley & Sons, 1998.
    [52] S. S. Chung, S. J. Chen, C. K. Yang, S. M. Cheng, S. H. Lin, Y. C. Sheng, H. S. Lin, K.-T. Hung, D. Y. Wu, T. R. Yew, S. C. Chien, F. T. Liou, and Frank Wen, “A novel and direct determination of the interface traps in sub-100 nm CMOS devices with direct tunneling regime (12-16 Å) gate oxide,” in Symp. VLSI Tech. Dig., pp. 74-75, 2002.
    [53] D. Bauza, “Extraction of Si-SiO2 interface trap densities in MOS structures with ultrathin oxides,” IEEE Electron Device Lett., vol. 23, no. 11, pp. 658-660, 2002.
    [54] P. Masson, J.-L. Autran, and J. Brini, “On the tunneling component of charge pumping current in ultrathin gate oxide MOSFETs,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 92-94, 1999.
    [55] D. Bauza and G. Ghibaudo, “Analytical study of the contribution of fast and slow oxide traps to the charge pumping technique,” Solid-State Electron., vol. 39, no. 4, pp. 563-570, 1996.
    [56] B. Djezzar, A. Smatti, and S. Qussalah, “A new oxide-trap based on charge-pumping (OTCP) extraction method for irradiated MOSFET device: Part II (Low Frequencies),” IEEE Trans. Nucl. Sci., vol. 51, pp. 1732-1736, Aug. 2004.
    [57] S. Jakschik, A. Avellan, U. Schroeder, and J. W. Bartha, “Influence of Al2O3 dielectrics on the trap-depth profiles in MOS devices investigated by the charge-pumping method,” IEEE Trans. Electron Devices, vol. 51, pp.2252-2255, Dec. 2004.
    [58] G. V. den Bosch, G. Groeseneken, P. Heremans, and H. Maes, “Spectroscopic charge pumping: A new procedure for measuring interface trap distributions in MOS transistors,” IEEE Trans. Electron Devices, vol. 38, pp.1820-1831, Aug. 1991.
    [59] Y. Yamamoto, K. Kita, K. Kyuno and A. Toriumi, “Structural and electrical properties of HfLaOx films for an amorphous high-k gate insulator,” Appl. Phys. Lett., vol. 89, no. 3, 032903 Jul. 2006.
    [60] G. Ribes, J.Mitard, M. Denais, S. Bruyere, F.Monsieur, C. Parthasarathy,E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device and Materials Reliability, vol. 5, no. 1, pp. 5–19, May. 2005.
    [61] F. Driussi, D. Esseni, L. Selmi and F. Piazza, "Damage generation and location in n- and p-MOSFETs biased in the Substrate Enhanced Gate Current Regime", IEEE Trans. Electron Devices, vol.49, no.5, pp.787-790, 2002.
    [62] H. E. Maes and G. Groeseneken, "Determination of Spatial Surface-State Density Distribution in MOS and SIMOS Transistors After Channel Hot-Electron Injection," IEEE Electron Device Lett., vol. 18, pp. 372-374, 1982.
    [63] C. C. Lu, K. S. Chang-Liao, Y. F. Cheng, and T. K. Wang, “Experimental evidence of suppression on oxygen vacancy formation in Hf based high-κ gate dielectrics with La incorporation”, Microelectronic Engineering, vol. 86, no. 7-9, pp. 1703-1706. July-September 2009.
    [64] C. Y. Lu, K. S. Chang-Liao, P. H. Tsai, and T. K. Wang, “Depth Profiling of Border Traps in MOSFET With High-κ Gate Dielectric by Charge-Pumping Technique,” IEEE Electron Device Lett., vol. 27, no. 10, pp. 859–862, Oct. 2006.
    [65] X. M. Li, M. J. Deen, “A New Charge Pumping Method for Determining the Spatial Interface State Density Distribution in MOSFETs,” in IEDM Tech. Dig., 1990, pp. 85-87.
    [66] X. M. Li, M. J. Deen, “Determination of interface state density in MOSFETs using the spatial profiling charge pumping technique,” Solid-State Electronics, Vol. 35, pp. 1059-1063, Aug. 1992.
    [67] Chun-Chang Lu, Kuei-Shu Chang-Liao, Chun-Yuan Lu, Shih-Cheng Chang, Tien-Ko Wang, Fu-Chung Hou, Yao-Tung Hsu, “Tunneling component suppression in charge pumping measurement and reliability study for high-k gated MOSFETs”, Microelectronics Reliability, vol. 51, no. 12, pp. 2110-2115. Dec. 2011..
    [68] P. F. Hsu, Y. T. Hou, F. Y. Yen, V. S. Chang, P. S. Lim, C. L. Hung, L. G. Yao, J. C. Jiang, H. J. Lin, J. M. Chiou, K. M. Yin, J. J. Lee, R. L. Hwang, Y. Jin, S. M. Chang, H. J. Tao, S. C. Chen, M. S. Liang, and T. P. Ma, “Advanced dual metal gate MOSFETs with high-k dielectric for CMOS application,” in VLSI Symp. Tech. Dig., 2006, pp. 14–15.
    [69] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling in thermally grown SiO2,” Journal of Applied Physics (JAP), vol. 40, pp. 278-283, 1969.
    [70] E. Amat, T. Kauerauf, R. Degraeve, and R. Rodríguez, “Competing Degradation Mechanisms in Short-Channel Transistors Under Channel Hot-Carrier Stress at Elevated Temperatures, ” IEEE Trans. Device and Materials Reliability, vol. 9, no. 3, pp. 454–458, Jan. 2009.
    [71] D. P. Ioannou, E. Cartier, Y. Wang, S. Mittl, "PBTI response to interfacial layer thickness variation in Hf-based HKMG nFETs," in Pro. IEEE Int. Rel. Phys. Symp., 2010, pp.1044,1048, 2-6
    [72] Tahui Wang; Chien-Tai Chan; Chun-Jung Tang; Ching-Wei Tsai; Wang, H.C.-H.; Min-Hwa Chi; Chun-Jung Tang, "A novel transient characterization technique to investigate trap properties in HfSiON gate dielectric MOSFETs-from single electron emission to PBTI recovery transient," Electron Devices, IEEE Transactions on , vol.53, no.5, pp.1073,1079, May 2006.
    [73] M. Denais, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, N. Revil, and A. Bravaix, “Interface trap generation and hole trapping under NBTI and PBTI in advanced CMOS technology with a 2-nm gate oxide,” IEEE Trans. Device Mater. Rel., vol. 4, no. 4, pp. 715–722, Dec. 2004.
    [74] C. R. Parthasarathy, M. Denais, V. Huard, G. Ribes, E. Vincent, and A. Bravaix, “New insights into recovery characteristics during PMOS NBTI and CHC degradation,” IEEE Trans. Device Mater. Rel., vol. 7, no. 1, pp. 130–137, Mar. 2007.
    [75] V. Huard, C. Parthasarathy, N. Rallet, C. Guerin, M. Mammase, D. Barge, and C. Ouvrard, “New characterization and modeling approach for NBTI degradation from transistor to product level,” in IEDM Tech. Dig., 2007, pp. 797–800.
    [76] C. Shen, M.-F. Li, X. P. Wang, Y.-C. Yeo, and D.-L. Kwong, “A fast measurement technique of MOSFET Id−Vg characteristics,” IEEE Electron Device Lett., vol. 27, no. 1, pp. 55–57, Jan. 2006.
    [77] D. Heh, Rino Choi, G. Bersuker, "Comparison of On-The-Fly, DC Id – Vg , and Single-Pulse Methods for Evaluating Threshold Voltage Instability in High- κ nMOSFETs," IEEE Electron Device Lett., vol.28, no.3, pp.245-247, March 2007.
    [78] Chien-Tai Chan, Chun-Jung Tang, Tahui Wang, Howard C.-H. Wang, and Denny D. Tang, "Characteristics and Physical Mechanisms of Positive Bias and Temperature Stress-Induced Drain Current Degradation in HfSiON nMOSFETs," IEEE Trans. Electron Devices, vol. 5, no. 6, pp. 1340–1346, June 2006.
    [79] J. F. Zhang, Z. Ji, M.H. Chang, B. Kaczer, G. Groeseneken, "Real Vth instability of pMOSFETs under practical operation conditions," in IEDM Tech. Dig., 2007, pp.817-820, 10-12 Dec. 2007
    [80] C. Tan, M. Xu, and Y. Wang, “Application of the difference subthreshold swing analysis to study generation of interface traps in MOS structures due to Fowler–Nordheim aging,” IEEE Electron Device Lett., vol. 15, no. 7, pp. 257–259, Jul. 1994.
    [81] J. F. Zhang, M. H. Chang, Z. Ji, L. Lin, I. Ferain, G. Groeseneken, L. Pantisano, S. De Gendt, and M. M. Heyns, “Dominant layer for stress-induced positive charges in Hf-based gate stacks,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1360–1363, Dec. 2008.
    [82] M. J. Uren and K. M. Brunson, “An improved technique for the evaluation of surface Fermi energy in metal–oxide–semiconductor capacitors,” Semicond. Sci. Technol., vol. 9, no. 8, pp. 1504–1510, Aug. 1994.
    [83] L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal–oxide–silicon diodes,” Solid State Electron., vol. 5, no. 5, pp. 285–299, Sep./Oct. 1962.
    [84] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. New York: Wiley, 1982.
    [85] W. J. Liu, Z. Y. Liu, H. Daming, C. C. Liao, L. F. Zhang, Z. H. Gan, W. Wong, C. Shen, and M.-F. Li, “On-the-fly interface trap measurement and its impact on the understanding of NBTI mechanism for p-MOSFETs with SiON gate dielectric,” in IEDM Tech. Dig., 2007, pp. 813–816.
    [86] P. Hehenberger, T. Aichinger, T. Grasser, W. Goes, O. Triebl, B. Kaczer, and M. Nelhiebel, "Do NBTI-induced interface states show fast recovery? A study using a corrected on-the-fly charge-pumping measurement technique," in Pro. IEEE Int. Rel. Phys. Symp., 2009, pp.1033-1038, 26-30.
    [87] D. S. Ang, Z. Q. Teo, C. M. Ng, "Reassessing NBTI mechanisms by ultrafast charge pumping measurement," Integrated Reliability Workshop Final Report, 2009. IRW '09. IEEE International , vol., no., pp.25-29, 18-22 Oct. 2009
    [88] L. Lin, Z. G. Ji, J. F. Zhang, W. D. Zhang, B. Kaczer, S. De Gendt, and G. Groeseneken, “A single pulse charge pumping technique for fast measurement of interface states,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1490–1498, May 2011.
    [89] D. Heh, C. D. Young, and G. Bersuker, “Experimental evidence of the fast and slow charge trapping/detrapping processes in high-k dielectrics subjected to PBTI stress,” IEEE Electron Device Lett., vol. 29, no. 2, pp. 180–182, Feb. 2008.
    [90] G. Bersuker, J. Sim, C. S. Park, C. Young, S. Nadkarni, R. Choi, and B. H. Lee, “Intrinsic threshold voltage instability of the HfO2 NMOS transistors,” in Proc. Int. Reliab. Phys. Symp., 2006, pp. 179–183.
    [91] F. Y. Yen, C. L. Hung, Y. T. Hou, P. F. Hsu, V. S. Chang, P. S. Lim, L. G. Yao, J. C. Jiang, H. J. Lin, C. C. Chen, Y. Jin, S. M. Jang, H. J. Tao, S. C. Chen, M. S. Liang, "Effective Work Function Engineering of TaxCy Metal Gate on Hf-Based Dielectrics," IEEE Electron Device Lett., vol.28, no.3, pp.201-203, March 2007.
    [92] C. Shen, M. -F Li, C. E. Foo, T. Yang, D.M. Huang, A. Yap, G.S. Samudra, Y. -C Yeo, "Characterization and Physical Origin of Fast Vth Transient in NBTI of pMOSFETs with SiON Dielectric," in IEDM Tech. Dig., 2006, pp.1,4, 11-13.
    [93] R. Fernandez, B. Kaczer, A. Nackaerts, S. Demuynck, R. Rodriguez, M. Nafria, G. Groeseneken, "AC NBTI studied in the 1 Hz -- 2 GHz range on dedicated on-chip CMOS circuits," in IEDM Tech. Dig., 2006, pp.1,4, 11-13 Dec. 2006.
    [94] H. Reisinger, T. Grasser, K. Ermisch, H. Nielen, W. Gustin, C. Schlunder, "Understanding and modeling AC BTI," in Pro. IEEE Int. Rel. Phys. Symp., 2011, pp.6A.1.1,6A.1.8, 10-14.
    [95] D. Kuzum, T. Krishnamohan, A. Nainani et al., “Experimental demonstration of high mobility Ge NMOS,” in IEDM Tech. Dig., 2009, pp. 1–4.
    [96] R. Zhang, N. Taoka, H. Po-Chin et al., “1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx /Ge MOS interfaces fabricated by plasma post oxidation,” in IEDM Tech. Dig., 2011, pp. 28.3.1–28.3.4.
    [97] C. H. Fu, K. S. Chang-Liao, L. J. Liu et al., “Enhanced hole mobility and low Tinv for pMOSFET by a novel epitaxial Si/Ge superlattice channel,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 188–190, Feb. 2012.
    [98] W. B. Chen and A. Chin, “High performance of Ge n-MOSFETs using SiO2 interfacial layer and TiLaO gate dielectric,” IEEE Electron Device Lett., vol. 31, no. 1, pp. 80–82, Jan. 2010.
    [99] Chen-Chien Li; Kuei-Shu Chang-Liao; Li-Jung Liu; Tzu-Min Lee; Chung-Hao Fu; Ting-Ching Chen; Jen-Wei Cheng; Chun-Chang Lu; Tien-Ko Wang, "Improved Electrical Characteristics of Ge MOS Devices With High Oxidation State in HfGeOx Interfacial Layer Formed by In Situ Desorption," IEEE Electron Device Lett., vol.35, no.5, pp.509,511, May 2014
    [100] C.H. Fu, K.S. Chang-Liao, C.C. Li, Z.H. Ye, F.M. Hsu, T.K. Wang, Y.J. Lee, M.J. Tsai “A higher-k tetragonal HfO2 formed by chlorine plasma treatment at interfacial layer for metal-oxide-semiconductor devices,” Appl. Phys. Lett., vol. 101, pp. 032105-1–032105-4, 2012
    [101] L.Å. Ragnarsson, C. Adelmann, Y. Higuchi, K. Opsomer, A. Veloso, S.A. Chew, E. Röhr, E. Vecchio, X. Shi, K. Devriendt, F. Sebaai, T. Kauerauf, M.A. Pawlak, T. Schram, S.V. Elshocht, N. Horiguchi, A. Thean, "Implementing cubic-phase HfO2 with κ-value ∼ 30 in low-VT replacement gate pMOS devices for improved EOT-Scaling and reliability," VLSI Technology (VLSIT), 2012 Symposium on , vol., no., pp.27,28, 12-14 June 2012
    [102] V. V. Afanas’ev, H.-Y. Chou, M. Houssa, A. Stesmans, L. Lamagna, A. Lamperti, A. Molle, B. Vincent, and G. Brammertz, “Transitivity of band offsets between semiconductor heterojunctions and oxide insulators,” Appl. Phys. Lett., vol. 99, no. 17, pp. 172101-1–172101-3, 2011.
    [103] D. Fischer and A. Kersch, “The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles,” Appl. Phys. Lett., vol. 92, no. 1, pp. 012908-1–012908-3, 2008.
    [104] T. S. Böscke, P. Y. Hung, P. D. Kirsch, M. A. Quevedo-Lopez, and R. Ramírez-Bon, “Increasing permittivity in HfZrO thin films by surface manipulation,” Appl. Phys. Lett., vol. 95, no. 5, pp. 052904-1–052904-3, 2009.
    [105] M. Gutowski, J. E. Jaffe, C.-L. Liu, S. Matt, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897–1899, Mar. 2002.
    [106] J. Müller, T. S. Böscke, U. Schröder, M. Reinicke, L. Oberbeck, D. Zhou, W. Weinreich, P. Kücher, M. Lemberger, and L. Freyc, “Improved manufacturability of ZrO2 MIM capacitors by process stabilizing HfO2 addition,” Microelectron. Eng., vol. 86, no. 7–9, pp. 1818–1821, Jul. 2009.
    [107] M. Cho, B. Kaczer, T. Kauerauf, L. Å. Ragnarsson, and G. Groeseneken, "Improved NBTI reliability with sub-1-nanometer EOT ZrO2 gate dielectric compared with HfO2," IEEE Electron Device Lett., vol.34, no.5, pp.593,595, May 2013
    [108] D. Tsoutsou, G. Apostolopoulos, S. Galata, P. Tsipas, A. Sotiropoulos, G. Mavrou, Y. Panayiotatos, A. Dimoulas, “Stabilization of a very high-k tetragonal ZrO2 phase by direct doping with germanium,” Microelectron. Eng. 86 (2009) 1626–1628.
    [109] C. M. Lin, H. C. Chang, I. H. Wong, S. J. Luo, C. W. Liu, and C. Hu, “Interfacial layer reduction and high permittivity tetragonal ZrO2 on germanium reaching ultrathin 0.39nm equivalent oxide thickness,” Appl. Phys. Lett., vol. 102, pp. 232906-1–232906-3, 2013.
    [110] K. Martens, B. Kaczer, T. Grasser, B. De Jaeger, M. Meuris, H. E. Maes, and G. Groeseneken, "Applicability of Charge Pumping on Germanium MOSFETs," IEEE Electron Device Lett., vol.29, no.12, pp.1364,1366, Dec. 2008
    [111] M. Cho, J.-D. Lee, M. Aoulaiche, B. Kaczer, P. Roussel, T. Kauerauf, R. Degraeve, J. Franco, L. Ragnarsson, and G. Groeseneken, “Insight into N/PBTI mechanisms in sub-1-nm-EOT devices,” IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 3342–3349, Oct. 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE