簡易檢索 / 詳目顯示

研究生: 陳姵㚬
Chen, Pei-Chun
論文名稱: HP0858及HP0279基因破壞對於胃幽門螺旋桿菌26695菌株脂多醣結構/功能及蛋白質醣化的影響
The effect of HP0858 and HP0279 gene disruption on the structure/function of lipopolysaccharide and protein glycosylation in Helicobacter pylori 26695 strain
指導教授: 高茂傑
Kao, Mou-Chieh
口試委員: 藍忠昱
Lan, Chung-Yu
殷献生
Yin, Hsien-Sheng
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 52
中文關鍵詞: 胃幽門螺旋桿菌脂多醣庚醣HP0858基因HP0279基因
外文關鍵詞: Helicobacter pylori, lipopolysaccharide, heptose, HP0858 gene, HP0279 gene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胃幽門螺旋桿菌 (Helicobacter pylori)是一種螺旋狀的革蘭氏陰性菌,它寄生於哺乳類動物的胃黏膜細胞,全球約有50%的人口被胃幽門螺旋桿菌感染,研究已經發現感染此菌會導致慢性胃炎、胃部或十二指腸潰瘍,且伴隨感染時間增長等因素會增加宿主罹患胃腺癌甚至是黏膜相關淋巴組織淋巴瘤的風險。了解胃幽門螺旋桿菌感染的致病機制有助於治療方法研究的開發。脂多醣 (lipopolysaccharide, LPS)是胃幽門螺旋桿菌的致病因子之一。脂多醣的結構主要有三部分:脂質A (Lipid A)、核心寡糖 (Core oligosaccharide)及O抗原 (O-antigen),其中核心寡糖的主要成分之一是庚醣 (Heptose)。最近有多篇研究指出庚醣生合成反應的一中間產物ADP heptose是新被發現之病原相關分子樣式,其會導致宿主胃壁上皮細胞中介白素-8 (Interleukin-8)大量活化。在這篇報告中,我們成功建構了HP0858基因被破壞的突變株,再加上實驗室先前已建構的和庚糖生合成途徑相關 (HP0857、HP0859、HP0860)及庚糖轉移酶I (HP0279)基因被破壞的突變株,讓我們有機會評估了胃幽門螺桿菌野生型26695菌株和這些與庚糖生合成相關的基因破壞突變株之間的差異。我們發現這些基因的突變會導致截斷的脂多醣結構,並增加胃幽門螺旋桿菌對清潔劑SDS及抗生素novobiocin的敏感性,最重要的是這些突變似乎也降低了胃幽門桿菌的致病性。我們希望這些發現能為尋找新的針對胃幽門螺桿菌感染的抗生素或疫苗開發的靶標提供啟示。


    Helicobacter pylori is a spiral-shaped Gram-negative bacterium that is parasitic to the gastric mucosal cells of mammals. About 50% of the world's population is infected with H. pylori. It has been reported that H. pylori infection results in chronic gastritis, gastric or duodenal ulcers, and gradually increases the risk for development of gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Understanding the pathogenic mechanism of H. pylori infection will help the development of therapeutic approaches. Lipopolysaccharide (LPS) is one of the pathogenic factors of H. pylori. The composition of LPS can be dived into three parts: Lipid A, core oligosac-charide and O-antigen. One of the main components of core oligosaccharides is heptose. Recently, several studies have pointed out that one of the intermediates of the heptose synthetic pathway, ADP heptose, functions as a novel pathogen-associated molecular pattern and can promote interleukin-8 activation in gastric epithelial cells. In this report, we constructed HP0858 gene disruption mutant. Along with other gene disruption mutants in the heptose biosynthetic pathway (including HP0857, HP0859 and HP0860) and heptosyltransferase I (encoded by HP0279) generated by other students in our laboratory previously, we had the chance to evaluate the differences of various physiological functions among H. pylori wild-type strain 26695 and these heptose biosynthesis-related isogenic mutants. We revealed the mutations in the heptose biosynthetic pathway-related genes and the gene encoded heptosyltransferase I could result in a truncated LPS structure. These mutations also increase the bacterial sensitivity to detergents and antibiotics. More importantly, these mutations reduce the bacterial infectivity of H. pylori. We hope that these findings will provide inspiration for finding new targets for the development of new antibiotics or vaccines against H. pylori infection.

    中文摘要 i ABSTRACT ii TABLE of CONTENTs iii ABBREVIATIONs v INTRODUCTION 1 Historical background of Helicobacter pylori 1 Determinants of H. pylori pathogenesis 1 Lipopolysaccharide (LPS) 2 Heptose biosynthetic pathway 3 Outer membrane vesicles (OMVs) 4 The motivation of this study 5 MATERIALs and METHODs 6 Bacterial strains and generation of mutants 6 Bioinformatics analysis 7 Bacterial liquid culture and total cell lysate preparation 7 LPS analysis by silver stain and immunoblotting 8 Bacterial growth curves analysis 9 SDS and novobiocin sensitivity analysis 9 Hydrophobicity and autoaggregation assays 9 Isolation of OMVs 10 Analyses of bacteria and bacterial OMVs for virulence factors 10 Cell culture and infection experiments 10 IL-8 measurements 11 Cell fractionation and immunoblotting 11 Statistical analysis 12 RESULTs 13 Sequence analysis of HP0858 and HP0279 in H. pylori 26695 strain 13 Gene disruption in HP0858 or HP0279 gene results in a truncated LPS structure 13 Defects in the heptose biosynthetic pathway of LPS have only a slight effect on the growth of H. pylori 15 Defects in the LPS inner core exhibit hypersensitivity to SDS and novobiocin 15 Defects in the LPS inner core increased surface hydrophobicity in H. pylori 16 AlpB may be glycosylated and the glycosylation process may shares enzymes from the LPS biosynthetic pathway 16 Mutations on the LPS inner core reduce the bacterial infectivity of H. pylori 17 Mutations on the biosynthesis of LPS inner core decreased the amount of key virulence factors present in OMVs 18 ADP heptose triggers the activation of IL-8 in AGS cells after H. pylori infection 18 DISCUSSION 20 REFERENCEs 23 TABLEs 27 FIGUREs 30 SUPPLEMENTARY DATA 49

    1. Bizzozero G. Ueber die schlauchförmigen Drüsen des Magendarmkanals und die Beziehungen ihres Epithels zu dem Oberflächenepithel der Schleimhaut. Arch Micrkrosk Anat. 1893;42(1):82-152.
    2. Goodwin CS, Armstrong JA, Chilvers R, Peters M, Collins MD. Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively. Int J Syst Bacteriol. 1989;39:397-405.
    3. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;323(8390):1311-5.
    4. Marshall BJ, Armstrong JA, McGechie DB, Clancy RJ. Attempt to fulfil Koch's postulates for pyloric Campylobacter. Med J Aust. 1985;142(8):436-9.
    5. Morris AJ, Ali MR, Nicholson GI, Perez-Perez GI, Blaser MJ. Long-term follow-up of voluntary ingestion of Helicobacter pylori. Ann Intern Med. 1991;114(8):662-3.
    6. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer research. 1995;55(10):2111-5.
    7. Wotherspoon AC, Diss T, Pan L, Isaacson P, Doglioni C, Moschini A, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancent. 1993;342(8871):575-7.
    8. Eaton KA, Krakowka S. Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infection and immunity. 1994;62(9):3604-7.
    9. Tsuda M, Karita M, Morshed MG, Okita K, Nakazawa T. A urease-negative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach. Infection and immunity. 1994;62(8):3586-9.
    10. Tsuda M, Karita M, Mizote T, Morshed MG, Okita K, Nakazawa T. Essential role of Helicobacter pylori urease in gastric colonization: definite proof using a urease-negative mutant constructed by gene replacement. European journal of gastroenterology & hepatology. 1994;6 Suppl 1:S49-52.
    11. Dunne C, Dolan B, Clyne MJ. Factors that mediate colonization of the human stomach by Helicobacter pylori. World J Gastroenterol. 2014;20(19):5610-5624.
    12. Tohidpour A. CagA-mediated pathogenesis of Helicobacter pylori. Microb. Pathog. 2016;93:44-55.
    13. Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proceedings of the Japan Academy Series B, Physical and biological sciences. 2017;93(4):196-219.
    14. Handa O, Naito Y, Yoshikawa T. CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling. Biochemical pharmacology. 2007;73(11):1697-702.
    15. Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. An Overview of Helicobacter pylori VacA toxin biology. Toxins. 2016;8(6):173.
    16. Papini E, Satin B, Norais N, de Bernard M, Telford JL, Rappuoli R, et al. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. The Journal of clinical investigation. 1998;102(4):813-20.
    17. Moran AP, Knirel YA, Senchenkova SN, Widmalm G, Hynes SO, Jansson PE. Phenotypic variation in molecular mimicry between Helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. Acid-induced phase variation in Lewis(x) and Lewis(y) expression by H. Pylori lipopolysaccharides. The Journal of biological chemistry. 2002;277(8):5785-95.
    18. Li H, Yang T, Liao T, Debowski AW, Nilsson HO, Fulurija A, et al. The redefinition of Heli-cobacter pylori lipopolysaccharide O-antigen and core-oligosaccharide domains. PLoS Pathog. 2017;13(3):e1006280.
    19. Li H, Liao T, Debowski AW, Tang H, Nilsson HO, Stubbs KA, et al. Lipopolysaccharide Structure and Biosynthesis in Helicobacter pylori. Helicobacter. 2016;21(6):445-61.
    20. Yamaoka Y. Helicobacter pylori: Molecular genetics and cellular biology. Norfolk: Caister Academic. 2008.
    21. King JD, Kocíncová D, Westman EL, Lam JS. Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun. 2009;15(5):261-312.
    22. Stead CM, Zhao J, Raetz CR, Trent MS. Removal of the outer Kdo from Helicobacter pylori lipopolysaccharide and its impact on the bacterial surface. Mol Microbiol. 2010;78(4):837-52.
    23. Altman E, Chandan V, Li J, Vinogradov E. Lipopolysaccharide structures of Helicobacter pylori wild-type strain 26695 and 26695 HP0826::Kan mutant devoid of the O-chain polysaccharide component. Carbohydrate research. 2011;346(15):2437-44.
    24. Valkonen KH, Wadstrom T, Moran AP. Interaction of lipopolysaccharides of Helicobacter py-lori with basement membrane protein laminin. Infection and immunity. 1994;62(9):3640-8.
    25. Moran AP. Helicobacter pylori lipopolysaccharide-mediated gastric and extragastric pathology. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 1999;50(5):787-805.
    26. Altman E, Smirnova N, Li J, Aubry A, Logan SM. Occurrence of a nontypable Helicobacter pylori strain lacking Lewis blood group O antigens and DD-heptoglycan: evidence for the role of the core alpha1,6-glucan chain in colonization. Glycobiology. 2003;13(11):777-83.
    27. Fischer W, Puls J, Buhrdorf R, Gebert B, Odenbreit S, Haas R. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Molecular microbiology. 2001;42(5):1337-48.
    28. Gaudet RG, Sintsova A, Buckwalter CM, Leung N, Cochrane A, Li J, et al. INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science (New York, NY). 2015;348(6240):1251-5.
    29. Zimmermann S, Pfannkuch L, Al-Zeer MA, Bartfeld S, Koch M, Liu J, et al. ALPK1- and TIFA-dependent innate immune response triggered by the Helicobacter pylori Type IV Secretion System. Cell reports. 2017;20(10):2384-95.
    30. Pfannkuch L, Hurwitz R, Traulsen J, Sigulla J, Poeschke M, Matzner L, et al. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2019;33(8):9087-99.
    31. Kadurugamuwa JL, Beveridge TJ. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. Journal of bacteriology. 1995;177(14):3998-4008.
    32. Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes and infection. 2006;8(9-10):2400-8.
    33. McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Molecular microbiology. 2007;63(2):545-58.
    34. Sabra W, Lunsdorf H, Zeng AP. Alterations in the formation of lipopolysaccharide and mem-brane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress condi-tions. Microbiology (Reading, England). 2003;149(Pt 10):2789-95.
    35. Keenan J, Day T, Neal S, Cook B, Perez-Perez G, Allardyce R, et al. A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection. FEMS microbiology let-ters. 2000;182(2):259-64.
    36. Haurat MF, Aduse-Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, et al. Selec-tive sorting of cargo proteins into bacterial membrane vesicles. The Journal of biological chemistry. 2011;286(2):1269-76.
    37. Altman E, Chandan V, Larocque S, Aubry A, Logan SM, Vinogradov E, et al. Effect of the HP0159 ORF mutation on the lipopolysaccharide structure and colonizing ability of Helico-bacter pylori. FEMS immunology and medical microbiology. 2008;53(2):204-13.
    38. Tamaki S, Sato T, Matsuhashi M. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. Journal of bacteriology. 1971;105(3):968-75.
    39. Marshall BJ. One Hundred Years of Discovery and Rediscovery of Helicobacter pylori and Its Association with Peptic Ulcer Disease. In: Mobley HLT, Mendz GL, Hazell SL, editors. Helicobacter pylori: Physiology and genetics. Washington (DC): ASM Press.; 2001.
    40. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annual review of biochemistry. 2002;71:635-700.
    41. Wang Z, Wang J, Ren G, Li Y, Wang X. Influence of core oligosaccharide of lipopolysaccharide to outer membrane behavior of Escherichia coli. Marine drugs. 2015;13(6):3325-39.
    42. Benz I, Schmidt MA. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Molecular microbiology. 2001;40(6):1403-13.
    43. Garcia-Weber D, Dangeard AS, Cornil J, Thai L, Rytter H, Zamyatina A, et al. ADP-heptose is a newly identified pathogen-associated molecular pattern of Shigella flexneri. EMBO reports. 2018;19(12).
    44. Pfannkuch L, Hurwitz R, Traulsen J, Kosma P, Schmid M, Meyer TF. ADP heptose, a novel pathogen-associated molecular pattern associated with Helicobacter pylori type 4 secretion. bioRxiv. 2018:405951.
    45. Alm RA, Trust TJ. Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. Journal of molecular medicine (Berlin, Germany). 1999;77(12):834-46.
    46. Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, et al. Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in Escherichia coli. Journal of bacteriology. 2002;184(2):363-9.
    47. Stein SC, Faber E, Bats SH, Murillo T, Speidel Y, Coombs N, et al. Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis. PLoS Pathog. 2017;13(7):e1006514.
    48. Ismail S, Hampton MB, Keenan JI. Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infection and immunity. 2003;71(10):5670-5.
    49. Bielaszewska M, Marejkova M, Bauwens A, Kunsmann-Prokscha L, Mellmann A, Karch H. Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 pro-duction in human intestinal epithelial cells by signaling via Toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-κB. International journal of medical microbiology : IJMM. 2018;308(7):882-9.
    50. Mullaney E, Brown PA, Smith SM, Botting CH, Yamaoka YY, Terres AM, et al. Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helico-bacter pylori. Proteomics Clinical applications. 2009;3(7):785-96.
    51. Olofsson A, Vallstrom A, Petzold K, Tegtmeyer N, Schleucher J, Carlsson S, et al. Biochemical and functional characterization of Helicobacter pylori vesicles. Molecular microbiology. 2010;77(6):1539-55.

    QR CODE