研究生: |
林至為 Lin, Zhi-Wei |
---|---|
論文名稱: |
高穩定性之半透明非富勒烯有機太陽能電池 High-Stability Nonfullerene Semitransparent Organic Solar Cells |
指導教授: |
洪勝富
Horng, Sheng-Fu |
口試委員: |
孟心飛
Meng, Hsin-Fei 張志宇 Chang, Chih-Yu |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 刮刀塗佈 、半透明 、非富勒烯有機太陽能電池 、高穩定性 、薄膜製程 |
外文關鍵詞: | blade-coating, semitransparent, nonfullerene organic solar cells, high stability, film process |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
綠能能源是近期備受矚目的議題,但除了生產能源外,如何將科技與生活結合更具有意義。本論文研究半透明非富勒烯有機太陽能電池,透過改變不同界面修飾層材料觀察其穩定性,未來能將此研究結果應用於開發大面積半透明有機太陽能電池,將其應用於綠建築和人類生活上。
實驗使用刮刀塗佈製程,能製做多層結構和大面積元件。論文所使用的界面修飾層材料包含蒸鍍製程之LiF和溶液刮刀塗佈製程之Liq。
內容主軸分為兩部分,第一部分探討活性層為PBDB-T:ITIC的半透明有機太陽能電池,界面層材料用LiF和Liq比較,界面層材料Liq之元件在80℃加熱基板上持續加熱480小時效率仍維持在初始效率的63.51%,界面層材料Liq之元件存放在大氣下經過2016小時效率仍維持在初始效率的93.62%。
第二部分參考文獻[1],將二元結構活性層中PBDB-T:ITIC添加富勒烯受體PC71BM成為三元結構PBDB-T:ITIC:PC71BM,多了第二受體材料增加了吸收光譜的吸收度,使效率得以提升。界面層材料Liq之元件在80℃加熱基板上持續加熱120小時效率仍維持在初始效率的70.07%,界面層材料Liq之元件存放在大氣下經過408小時效率達到初始效率的108.59%。
最後部分探討不同銀電極厚度得到之平均可見光穿透度和轉換效率,能將此研究成果應用在大面積半透明有機太陽能電池上,使科技和生活結合達到綠建築之目的。
Green energy is a topic that has attracted much attention recently. However, in addition to produce energy, how to combine technology with life makes more important. This paper studies semitransparent non-fullerene organic solar cells. By changing different interlayer modification materials to observe the stability of devices. This research result can be applied to the development of large-area semitransparent organic solar cells in the future. It can be applied to Green Building and humans life.
The solution blade coating process can be used to fabricate multilayer structures and large-area devices. The interlayer modification materials are used in this paper included LiF by evaporation process and Liq by solution blade coating process.
The content is divided into two parts. In the first part, we discuss that the semitransparent organic solar cell with active layer PBDB-T:ITIC, and the interlayer modification materials are compared with LiF and Liq. The device with interlayer modification material Liq has been heated on the substrate at 80° C for 480 hours, and the efficiency still maintain at 63.51% of the initial efficiency. The device with interlayer modification material Liq has been stored in the atmosphere after 2016 hours still maintain at 93.62% of the initial efficiency.
In the second part,and it refers to reference[1]. I added fullerene acceptor PC71BM into the active layer PBDB-T:ITIC in the binary structure, so that tranfered to the ternary structure PBDB-T:ITIC:PC71BM. After the second acceptor material PC71BM was be added into PBDB-T:ITIC, it advanced the efficiency of the devices.
The devices with interlayer modification material Liq have been heated on the substrate at 80° C for 120 hours and the efficiency still maintained at 70.07% of the initial efficiency. The devices with interlayer modification material Liq have been stored in the atmosphere and the efficiency have reached 108.59% of the initial efficiency after 408 hours.
It discusses that average visible transmittance and conversion efficiencies with different silver electrode thicknesses. This research result can be applied to large-area semitransparent organic solar cells, combining science and technology with life to achieve the goals of Green Buildings.
[1] H. Lu, J. Zhang, J. Chen, Q. Liu, X. Gong, S. Feng, X. Xu, W. Ma, and Z. Bo, “Ternary-Blend Polymer Solar Cells Combining Fullereneand Nonfullerene Acceptors to Synergistically Boost the Photovoltaic Performance”, Advanced Materials. (2016). 28, 9559-9566.
[2] International Energy Agency: www.iea.org/statistics/statisticssearch/.
[3] L. Peng, G. S. Yan, “Clean Energy Grid-Connected Technology Based on Smart Grid”, Energy Procedia. (2011). 12, 213-218.
[4] Chapin, D. M., C. S. Fuller, and G.L. Pearson, “A New Silicon p‐n Junction
Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied
Physics. (1954). 25, 676.
[5] Zhao, J., et al., “19.8% efficient“honeycomb” textured multicrystalline and 24.4%
monocrystalline silicon solar cells”, Applied Physics Letters. (1998). 73, 1991.
[6] Schultz, O., S.W. Glunz, and G.P. Willeke, “SHORT COMMUNICATION:
ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency”, Progress in Photovoltaics: Research and Applications. (2004). 12, 553-558.
[7] Benagli, S., et al., High-efficiency amorphous silicon devices on LPCVD-ZNO
TCO prepared in industrial KAI-M R&D reactor, in 24th European Photovoltaic,
Solar Energy Conference. 2009: Hamburg.
[8] Kearns D., Calvin M., “Photovoltaic Effect and Photoconductivity in Laminated Organic Systems”, J.Chem.Phys. (1958). 29, 950-951.
[9] K. M. Coakley, Wudl and M. D. McGehee, “Conjugated polymer photovoltaic cells”, Chem. Mater. (2004). 16, 4533-4542.
[10] H. Hoppe, et al., “Organic solar cells: An overview”. Journal of Materials Research. (2004). 19, 1924-1945.
[11] M. B. Upama, M. Wright, N. K. Elumalai, M. A. Mahmud, D. Wang, C. Xu, and A. Uddin, “High-Efficiency Semitransparent Organic Solar Cells with Non-Fullerene Acceptor for Window Application”, ACS Photonics. (2017). 4, 2327−2334.
[12] H. Lu, J. Zhang, J. Chen, Q. Liu, X. Gong, S. Feng, X. Xu, W. Ma, and Z. Bo, “Ternary-Blend Polymer Solar Cells Combining Fullereneand Nonfullerene Acceptors to Synergistically Boost the Photovoltaic Performance”, Adv. Mater. (2016). 28, 9559–9566.
[13] Tseng, S.-R., et al., “Multilayer polymer light-emitting diodes by blade coating
method”. Applied Physics Letters. (2008). 93, 153308
[14] Tsai, P.-T., et al., “Large-area organic solar cells by accelerated blade coating”,
Organic Electronics. (2015). 22, 166-172.
[15] J. Nelson, “Introduction of polymer articles for Current Opinion in Solid State an
d Materials Science”, Current Opinion in Solid State and Materials Science. (2002), 14, 27-27.
[16] L. H. S. Martijn, M. Wienk, J. M. Kroon, “Hybrid TiO :polymer photovoltaic cells made from a titanium oxide 2 precursor”, Thin Solid Films. (2004). 451, 634.
[17] J. Nelson, S. A. Choulis, J. R. Durrant, “Charge recombination in polymer/fullerene photovoltaic devices”, Thin Solid Films. (2004). 451, 508-514.
[18] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M.
Minse, L. Sanchez,J. C. Hummelen, “Plastic solar cells”, Adv. Funct. Mater. (2001). 11, 374.
[19] M. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J.
Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10 %
energy-conversion efficiency”, Adv. Mater. (2006). 18, 789.
[20]. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes, “The photovoltaic response in poly(ppheny1ene vinylene) thin-film devices”, J.Phys. :Condens. Matter. (1994). 6, 1379
[21]. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells”, Thin Solid Film. (1994). 368, 403-404
[22]. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerenephotovoltaiccells”, In OrganicPhotovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol.5215,p. 111(SPIE, Bellingham, WA, 2004).
[23] W. Zhao et al., “Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability”, Adv. Mater., (2006). 28, 4734–4739
[24] H. Bin et al., J. Am , “Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency”, .Chem. Soc., (2016). 138, 4657−4664
[25] B. A. E. Courtright, S. A. Jenekhe, “Polyethylenimineinterfacial layers in inverted organic photovoltaic devices: effects of ethoxylation and molecular weight on efficiencyand temporal stability”, ACS Appl. Master. Interfaces. (2015). 7, 26167-26175
[26] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, “Effect od LiF/metal electrodes on the performance of plastic solar cells”, Appl Phys.Lett. (2002). 80, 1288
[27] Ke Xu, Dae Hun Kim, Se Han Lee, Tae Whan Kim, “Enhancement of the power conversion efficiency for organic photovoltaic cells with a Liq/bathocuproine electron transport bilayer”, Thin Solid Films. (2013). 547, 116-119
[28] http://ir.lib.ncku.edu.tw/handle/987654321/93333
[29] I. D. Parker, H. H. Kim, “Fabrication of polymer light-emmiting diodes using doped silicon electrodes ”, Appl. Phys. Lett, (1949). 64, 1774
[30] Y. Zheng, J. Huang , G. Wang, J. Kong , D. Huang, M. M. Beromi, N. Hazari, André D. Taylor, J. Yu, “A highly efficient polymer non-fullerene organic solar cell enhanced by introducing a small molecule as a crystallizing-agent”, Materialstoday. (2017). 21, 1369-7021
[31] W. Tress, O. Inganäs, “Simple experimental test to distinguish extraction and injection barriers at the electrodes of (organic) solar cells with S-shaped current–voltage characteristics”, Solar Energy Materials & Solar Cells. (2013). 117, 599–603