研究生: |
林家鵬 Lin, Chia-Peng |
---|---|
論文名稱: |
光柵結構之表面電漿柯爾磁光增強效應整合微流體晶片系統應用於生醫感測 Demonstration of Using Surface Plasmon Enhanced Magneto-Optic Kerr Effect to Implement a Compact Micro-Optofluidic Sensor |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: |
衛榮漢
Wei, Zung-Hang 李國賓 Lee, Gwo-Bin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 微流體 、生醫感測 、表面電漿光柵 、磁光柯爾效應 |
外文關鍵詞: | microfluidics, biosensor, surface plasmonic grating, magneto-optical Kerr effect |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們主要在金光柵表面電漿(SPR)系統下,加入鐵磁性材料形成金/鐵/金之三明治結構,以提升橫向磁光柯爾效應(TMOKE)的表面電漿增強現象,並應用於非標定、高敏感度的光學生物量測。經材料選擇與結構尺寸優化,而後整合PDMS微流道系統封裝;其中包含微泵浦(micropump)及閥門(normally-close valves)等動件並加入PDMS稜鏡設計降低反射雜訊,成一32×22 mm2的自動化生醫感測晶片。我們分析了元件特性及生物量測的能力,其最大磁光訊號約為0.04 且能觀察到磁光訊號在共振波長附近對環境折射率具有相當高的靈敏度。首先透過整合好的磁光感測晶片來量測不同濃度的蔗糖水溶液,所測得之本質解析度與蔗糖水(bulk solution)的最小解析濃度分別約為1.47×10-6 RIU與0.007%(wt);之後利用高親和力的avidin/biotin生物組合做動態(real time)量測:預先將biotin透過BSA標定接於元件金表面,後通入不同濃度之avidin驗證表面電漿磁光訊號對表面附近之生物檢體具有線性量測與定量分析的特性,計算得出avidin 之解析度約為31nM。
In this thesis, a high-sensitivity biosensor is demonstrated by exploiting surface plasma(SP) enhanced transverse magneto-optical Kerr effect(TMOKE). The size of the device is 32×22 mm2 with the prism, microfluidic system and ferromagnetic plasmonic grating integrated on a single chip with the ability to deliver and detect bio-agents systematically. The SP grating made on an optimized composite Au/Fe/Au layer exhibits a very dispersive Kerr Parameter variation near the surface plasmon resonance wavelength. After the fabricating process, we characterized the magneto optical effect of the composite ferromagnetic grating and the capabilities for detecting bio-molecules. The maximum of measured Kerr signal is about 0.04 with convert factor of 0.087 nm-1. Through this integrated system, we have demonstrated the detection of sucrose solution in low concentrations. The calculated resolution for bulk solution is about 10-6 RIU, corresponding to a minimal concentration of 0.007 %(wt). Moreover, a preliminary experimental result on studying avidin biotin interaction was also shown. The sensitivity of avidin detection in PBS solution is about 31 nM, which is limited by the fluctuation of flowing media during measurement. The whole system is potential to accomplish a compact, noncontact optical detection scheme.
[1] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine, vol. 4, pp. 396-402, Jul-Dec 1902.
[2] U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)," Journal of the Optical Society of America, vol. 31, pp. 213-222, 1941.
[3] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Physical Review Letters, vol. 21, pp. 1530-1533, 1968.
[4] E. A. Stern and R. A. Ferrell, "SURFACE PLASMA OSCILLATIONS OF A DEGENERATE ELECTRON GAS," Physical Review, vol. 120, pp. 130-136, 1960 1960.
[5] E. Kretschmann and H. Raether, "Notizen: radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968.
[6] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[7] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, pp. 667-669, 1998.
[8] K. Yao and Y. Liu, "Plasmonic metamaterials," Nanotechnology Reviews, vol. 3, pp. 177-210, 2014.
[9] B. Liedberg, C. Nylander, and I. Lundstrom, "SURFACE-PLASMON RESONANCE FOR GAS-DETECTION AND BIOSENSING," Sensors and Actuators, vol. 4, pp. 299-304, 1983 1983.
[10] A. Manz, N. Graber, and H. á. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sensors and actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[11] Y.-C. Li, Y.-F. Chang, L.-C. Su, and C. Chou, "Differential-phase surface plasmon resonance biosensor," Analytical Chemistry, vol. 80, pp. 5590-5595, Jul 15 2008.
[12] D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, et al., "Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing," Journal of Applied Physics, vol. 108, p. 054502, 2010.
[13] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003.
[14] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, vol. 16, pp. 1685-1706, 2004.
[15] A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, "Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings," Applied Physics Letters, vol. 97, p. 261908, 2010.
[16] J. M. Liu, "photonic Devices," 2005.
[17] B. H. A. Y. Victor Antonov, Electronic Structure and Magneto-Optical Properties of solids: KLUWER ACADEMIC PUBLISHERS, 2004.
[18] B. D. C. a. C. D. Graham, Introduction to Magnetic Materials. Mass: Addison Wesley, 1972.
[19] F. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, et al., "Circular Magnetoplasmonic Modes in Gold Nanoparticles," Nano Letters, vol. 13, pp. 4785-4789, 2013.
[20] V. I. Belotelov, I. A. Akimov, PohlM, V. A. Kotov, KastureS, A. S. Vengurlekar, et al., "Enhanced magneto-optical effects in magnetoplasmonic crystals," Nat Nano, vol. 6, pp. 370-376.
[21] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag, vol. 14, pp. 302-307, 1966.
[22] J.-N. Hwang and F.-C. Chen, "Effect of the conductivity profile on the stability of the ADI-FDTD method with split-field PML," in 2006 Asia-Pacific Microwave Conference, 2006, pp. 945-948.
[23] J.-P. Berenger, "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Transactions on Antennas and Propagation, vol. 44, pp. 110-117, 1996.
[24] D. J. Bergman and Y. M. Strelniker, "Anisotropic ac electrical permittivity of a periodic metal-dielectric composite film in a strong magnetic field," Physical review letters, vol. 80, p. 857, 1998.
[25] Y. M. Strelniker and D. J. Bergman, "Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field," Physical Review B, vol. 59, p. R12763, 1999.
[26] Y. M. Strelniker, "Theory of optical transmission through elliptical nanohole arrays," Physical Review B, vol. 76, p. 085409, 2007.
[27] C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, "Magnetic field modulation of intense surface plasmon polaritons," Optics Express, vol. 18, pp. 7743-7752, Apr 12.
[28] G. Armelles, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, M. U. Gonzalez, J. B. Gonzalez-Diaz, et al., "Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties," Journal of Optics a-Pure and Applied Optics, vol. 11, Nov 2009.
[29] S. Kopetz, D. Cai, E. Rabe, and A. Neyer, "PDMS-based optical waveguide layer for integration in electrical–optical circuit boards," AEU-International Journal of Electronics and Communications, vol. 61, pp. 163-167, 2007.
[30] W. Qiu, "PDMS Based Waveguides for Microfluidics and EOCB," Zhejiang University, 2012.
[31] Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, "Surface plasmon-induced enhancement of the magneto-optical Kerr effect in magnetoplasmonic heterostructures," Journal of the Optical Society of America B, vol. 28, pp. 2115-2122, 2011.
[32] Z. Geng, Q. Li, W. Wang, and Z. Li, "PDMS prism-glass optical coupling for surface plasmon resonance sensors based on MEMS technology," Science China Information Sciences, vol. 53, pp. 2144-2158, 2010.
[33] Z.-x. Geng, X. Ji, X. Lou, Q. Li, W. Wang, and Z.-h. Li, "A surface plasmon resonance (SPR) sensor chip integrating prism array based on polymer microfabrication," in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, 2008, pp. 2561-2564.
[34] K. H. Yoon, M. L. Shuler, and S. J. Kim, "Design optimization of nano-grating surface plasmon resonance sensors," Optics Express, vol. 14, pp. 4842-4849, May 29 2006.
[35] J. Korpela, "AVIDIN, A HIGH-AFFINITY BIOTIN-BINDING PROTEIN, AS A TOOL AND SUBJECT OF BIOLOGICAL-RESEARCH," Medical Biology, vol. 62, pp. 5-26, 1984 1984.
[36] ThermoFisherScientific. Avidin-Biotin Interaction. Available: https://www.thermofisher.com/tw/zt/home.html
[37] M. Frasconi, F. Mazzei, and T. Ferri, "Protein immobilization at gold-thiol surfaces and potential for biosensing," Analytical and Bioanalytical Chemistry, vol. 398, pp. 1545-1564, Oct 2010.
[38] K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Analytical and Bioanalytical Chemistry, vol. 386, pp. 639-644, Oct 2006.
[39] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," analytica chimica acta, vol. 620, pp. 8-26, 2008.
[40] J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999.