研究生: |
王寧遠 Wang, Ning-Yuan |
---|---|
論文名稱: |
高聚光型太陽能電池模組於熱循環測試下之壽命預測 Life Prediction of High Concentration Photovoltaic Module Subjected to Thermal Cycling Test |
指導教授: |
江國寧
Chiang, Kuo-Ning |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 高聚光型太陽能電池模組 、有限元素分析 、暫態熱分析 、熱循環測試 、電流循環測試 、壽命預測 |
外文關鍵詞: | High Concentration Photovoltaic (HCPV) Module, Finite Element Analysis, Transient Thermal Analysis, Thermal Cycling Test, Power Cycling Test, Life Prediction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著環保意識的抬頭,如何純淨地產生能源備受重視,而太陽能電池具有以零汙染方式將光能轉換成電能的能力,逐漸受到各產業的青睞。為了探討太陽能電池模組的長時可靠度與耐久度,國際電工委員會(International Electrotechnical Commission, IEC)於2007年針對聚光型太陽能電池(Concentration Photovoltaic, CPV)模組製定了一系列的規範。規範中的加速熱循環測試除了改變烘箱的溫度外,在烘箱溫度高於25 oC時,將輸入額定循環電流負載於試片中,以模擬實際太陽能電池之工作環境。為簡化電流負載與環境溫度改變的耦合溫度場分析,假設電流負載所產生的溫度變化可疊加於環境溫度下,再以此溫度場循環作為結構分析的溫度負載。本研究使用有限元素分析軟體ANSYS®進行熱固耦合分析,並探討此模組於熱循環測試(Thermal Cycling Test)下之長時可靠度。
本研究將針對高聚光型太陽能電池(High Concentration Photovoltaic, HCPV)模組進行討論。首先比較二維模型於升溫段的理論解與有限元素數值解,發現銲錫之應力最大分佈皆集中在位於陶瓷基板與鋁板間之銲錫邊緣處。由三維模型於升溫段的分析可得知銲錫的厚度會影響銲錫邊緣的等效塑性應變;銲錫之塗佈厚度越小,其等效塑性應變值越大。
本研究假設初始裂縫將由銲錫之最角落處開始成長,在計算HCPV模組之熱疲勞壽命時忽略初始裂縫循環數,換句話說即是以裂縫成長循環數作為HCPV的壽命預估依據。分析結果指出當裂縫長度為7.47 mm時,將使得晶片溫度上升且順向偏壓變化2%,進而造成試片失效,此時模組之熱疲勞壽命約為2,808循環數。
參考文獻
[1] R. R. King, D. C. Law, K. M. Edmonson, "Metamorphic Concentrator Solar Cells with Over 40% Conversion Efficiency " Spectrolab Inc., 4th International Conference on Solar Concentrators for the generation of Electricity or Hydrogen, El Escorial, Spain, Mar. 2007.
[2] A. Mertol, "Stress Analysis and Thermal Characterization of a High Pin Count PQFP," Journal of Electronic Packaging, Vol. 114, pp. 211-220, Jun. 1992.
[3] S. M. Heinrich, P. E. Liedtke, N. J. Nigro, A. F. Elkouh, and P. S. Lee, "Effect of Chip and Pad Geometry on Solder Joint Formation in SMT," Journal of Electronic Packaging, Vol. 115, pp. 433-439, 1993.
[4] J. R. González, M. Vázquez, N. Núñez, C. Algora, I. Rey-Stolle, and B. Galiana, "Reliability Analysis of Temperature Step-stress Tests on III-V High Concentrator Solar Cells," Microelectronics Reliability, Vol. 49, pp. 673-680, 2009.
[5] J. Evans and J. Y. Evans, "Packaging Factors Affecting the Fatigue Life of Power Transistor Die Bonds," IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 21, pp. 459-468, 1998.
[6] D. Olsen and H. Berg, "Properties of Die Bond Alloys Relating to Thermal Fatigue," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 2, pp. 257-263, 1979.
[7] K. Suzuki, T. Higashino, K. Tsubosaki, A. Kabashima, K. Mine, and K. Nakayoshi, "Silicone Die Bond Adhesive and Clean In-line Cure for Copper Lead Frame," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, pp. 883-887, 1990.
[8] Y. H. Pao, E. Jih, V. Siddapureddy, and R. L. X. Song, "A Thermal Fatigue Model for Surface Mount Leadless Chip Resistor (LCR) Solder Joints," Sensing, Modeling and Simulation in Emerging Electronic Packaging, ASME, Vol. 17, pp. 1-12, 1996.
[9] J. Parry, C. Marooney, M. Warner, C. Bailey, and K. Pericleous, "An Integrated Approach to Flow, Thermal and Mechanical Modeling of Electronics Devices," Proceedings of the 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 862-868, San Diego, CA, USA, 30 May - 1 June 2002.
[10] Jeffrey C. Suhling, H.S. Gale, R. Wayne Johnson, M. Nokibul Islam, Tushar Shete, Pradeep Lall, Michael J. Bozack, John L. Evans, Ping Seto, Tarun Gupta, and J. R. Thompson, "Thermal Cycling Reliability of Lead-Free Chip Resistor Solder Joints," Soldering & Surface Mount Technology, Vol. 16, pp. 77-87, 2004.
[11] A. R. Zbrzezny, N. McLellan, and Y. J. Lee, "Reliability of High I/O Count Wafer Level Packages," 58th Electronic Components and Technology Conference, pp. 309-313, Lake Buena Vista, FL, USA, May 2008.
[12] Y. L. Kim, C. J. Youn, J. H. Lee, H. K. Baek, E. C. Ahn, Y. H. Song, and T. G. Chung, "Board Level Reliability of Novel Fan-in Package on Package(PoP)," VLSI Packaging Workshop, pp. 57-61, Japan, 2008.
[13] F. X. Che, J. H. L. Pang, B. S. Xiong, X. Luhua, and T. H. Low, "Lead Free Solder Joint Reliability Characterization for PBGA, PQFP and TSSOP Assemblies," Proceedings of the 55th Electronic Components and Technology Conference, Vol. 1, pp. 916-921, Lake Buena Vista, Florida, 31 May-3 June 2005.
[14] R. Darveaux, "Effect of Simulation Methodology on Solder Joint Crack Growth Correlation," Proc. of the 50th Electronic Components and Technology Conference, pp. 1048-1058, Las Vegas, USA, 2000.
[15] J. He, M. C. Shaw, N. Sridhar, B. N. Cox, and D. R. Clarke, "Direct Measurement of Thermal Stress Distribution in Large Die Bonds for Power Electronics," Materials Research Society Symposium Proceedings, Vol. 515, pp. 99-104, 1998.
[16] J. H. Lau, "Solder Joint Reliability: Theory and Applications," Van Nostrand Reinhold, New York, pp. 390-391, 1991.
[17] T. H. Wang, Y. S. Lai, and Y. C. Lin, "Reliability Evaluations for Board-level Chip-scale Packages under Coupled Power and Thermal Cycling Test Conditions," Microelectronics Reliability, Vol. 48, pp. 132-139, 2008.
[18] T. H. Wang, "Transient Thermal Analysis and Reliability Evaluation for Board-Level Chip-Scale Packages Subjected to Coupled Power and Thermal Cycling Test Condidtions," PhD. Thesis, 2008.
[19] C. Andersson, Z. Lai, J. Liu, H. Jiang, and Y. Yu, "Comparison of Isothermal Mechanical Fatigue Properties of Lead-free Solder Joints and Bulk Solders," Materials Science and Engineering A, Vol. 394, pp. 20-27, 2005.
[20] S. Deplanque, W. Nuchter, B. Wunderle, R. Schacht, and B. Michel, "Lifetime Prediction of SnPb and SnAgCu Solder Joints of Chips on Copper Substrate Based on Crack Propagation FE-Analysis," 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSime, pp. 1-8, Italy, April, 2006.
[21] W. T. Chen and C. W. Nelson, "Thermal Stress in Bonded Joints," IBM Journal of Research and Development, Vol. 23, March 1979.
[22] W. H. McAdams, Heat Transmission: 3rd. McGraw Hill Book Company Inc., 1954.
[23] G. N. Ellison, Thermal Computations for Electronic Equipment: Van Nostrand Reinhole Company, New York, 1989.
[24] W. H. Chen, H. C. Cheng, and H. A. Shen, "An Effective Methodology for Thermal Characterization of Electronic Packaging," IEEE Transactions on Components and Packaging Technologies, Vol. 26, pp. 222-232, 2003.
[25] R. D. Cook, D. S. Markus, M. E. Plesha., and R. J. Witt, Concepts and Applications of Finite Element Analysis: John Wiley & Sons, Inc., New York, 2002.
[26] ANSYS User's Mannual: ANSYS Inc. Company.
[27] W. F. Chen and D. J. Han, Plasticity for Structural Engineers: GAU LIH BOOK CO., LTD, 1995.
[28] 江國寧, 微電子系統封裝基礎理論與應用技術: 滄海書局, 2006.
[29] J. E. Shigley, C. R. Mischke, and R. G. Budynas, Essentials of Mechanical Engineering Design, 1st ed. New York: Mc Graw Hill, 2004.
[30] J. M. Gere, Mechanics and Materials: Springer-Verlag, 1994.
[31] Collins J. A., Failure of Materials in Mechanical Design: John Wiley & Sons, 1981.
[32] J. M. Gere, Mechanics of Material, 6th ed.: Brooks/Cole, Thomson, 2004.
[33] W. F. Chen and D. J. Han, Plasticity for Structure Engineers: GAU LIH BOOK CO.,LTD, 1995.
[34] L. F. Coffin, "A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal," Transactions of ASME, Vol. 76, pp. 931-950, 1954.
[35] S. S. Manson, Thermal Stress and Low Cycle Fatigue: McGraw-Hill, New York, pp. 125-192, 1966.
[36] K. N. Chiang, Z. N. Liu, and C. T. Peng, "Parametric Reliability Analysis of No-Underfill Flip Chip Package," IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, pp. 635-640, 2001.
[37] C. A. Yuan, C. N. Han, M. C. Yew, C. Y. Chou, and K. N. Chiang, "Design, Analysis and Development of Novel Three-Dimensional Stacking WLCSP," IEEE Transactions on Advanced Packaging, Vol. 28, No 3, pp. 387-396, 2005.
[38] H. D. Solomon, "Low cycle Fatigue of Sn96 Solder with Reference to Eutectic Solder and a High Pb Solder," ASME Transactons on Journal of Electronic Packaging, Vol. 113, pp. 102-108, 1991.
[39] R. Darveaux, "Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction," ASME Journal of Electronic Packaging, Vol. 124, No. 3, pp. 147-154, 2002.
[40] J. H. Lau, Ball Grid Array Technology, McGraw-Hill, Inc., New York, pp. 160-161, 382, 1995.
[41] International Electrotechnical Commission, "IEC 62108 Ed.1: Concentrator photovoltaic (CPV) modules and assemblies - Design qualification and type approval," IEC62108,USA, 2007.
[42] P. Hegde, D. Whalley, and V. V. Silberschmidt, "Creep Analysis of a Lead-free Surface Mount Device," International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, EuroSime, pp. 1-7, London, England, 2007.
[43] T. Matsunaga and S. Sudo, "Evaluation of Fatigue Life Reliability and New Lead Bonding Technology for Power Modules," Mitsubishi Electric Advance, Vol. 113, pp. 13-16, 2006.
[44] T. Lhommeau, C. Martin, M. Karama, R. Meuret, and M. Mermet-Guyennet, "Base-plate solder reliability study of IGBT modules for aeronautical application," European Conference on Power Electronics and Applications, pp. 1-10, Aalborg, Denmark, 2-5 Sep. 2007.