研究生: |
莊鴻 Chuang, Hung |
---|---|
論文名稱: |
設計及合成具光分解性之「含矽聚乳酸-乙醇酸」及其應用 Design and Synthesis of New Photodegradable Silicon-containing Poly(Lactic-co-glycolic Acid) with Applicability |
指導教授: |
胡紀如
Hwu, Jih-Ru |
口試委員: |
許銘華
Hsu, Ming-Hwa 張家靖 Chang, Chia-Chinh 蔡淑貞 Tsay, Shu-Chen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 聚乳酸-甘醇酸 、諾里什反應 、光解反應 |
外文關鍵詞: | Poly(Lactic-co-glycolic acid), Norrish Type reaction, photolysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藥物傳輸系統已經研究了許多年,而許多擁有相當高活性的分子,往往因為其相對高的毒性,而無法當作藥物使用,因此,使用藥物傳輸系統,可以有效的降低其活性,並增加其可當作藥物使用之機率。再者,適當調整藥物傳輸系統,可以有效控制釋放藥物在病兆處。
於本篇論文中,本人提出一個新的概念,將諾里什反應(Norrish reaction) 引導至藥物載體聚乳酸-甘醇酸中,我們用乙醯乙酸乙酯作為起始物並將其位置導入三甲基矽基,為了在末端生成羥基,我們先用兩個鹼移除掉ethyl -[(trimethylsilyl)methyl]acetoacetate上之兩個氫,再與chloromethyl benzyl ether進行加成反應,此後在氫氣條件下,使用鈀金屬催化移除苄基得到末端羥基產物,且再用鹼性條件使其成為設計之單體,最後將其與lactide及glycolide進行聚合反應,得到產率為78%之高分子,其平均分子量約為24,000。
我們將合成出之聚合物藉由中壓汞燈的照射,得到斷裂後的碎片,其分子量約為8,000,經過計算,平均鍵結斷裂數為1.8,而斷裂效率為92.4%。
Drug delivery system has been investigated for several years. Several excellent drug candidates failed to be applied on clinical usage, as their high toxicity to both tumor and normal cells. Therefore, by using drug delivery system, the toxicity of these candidates could be neutralized, and potential new therapeutics could be developed. Furthermore, effective drug controlled release could be well manipulated by drug delivery system.
In this thesis, we have developed a new concept to apply Norrish Type reaction on poly(lactic-co-glycolic acid) to produce a novel polymer for drug delivery and release. First, we used ethyl acetoacetate as starting materials and introduced silyl group on position of acetate. Second, to modify the monomer with the hydroxyl group, we treated ethyl -[(trimethylsilyl)methyl]acetoacetate with two kinds of bases and chloromethyl benzyl ether, then we used palladium to deprotect benzyl group under hydrogen and the following basic treatment to get the desired monomer. Furthermore, we carried out polymerization with lactide, glycolide and the designed monomer in 78% yield; the average molecular weight of polymeric product is about 24,000 Da, estimated by GPC.
Finally, the photo treatment of designed polymer was performed with medium-pressure mercury UV lamp. After photo-irradiated induction, the synthesized polymer was cleaved into the fragments of molecular weight about 8,000 Da; the average numbers of bond broken is 1.8, and the efficiency of bond broken is 92.5%. This photo sensitivity of polymer can be modified to control the polymer cleavage, as well as to control and release the drug bound to the polymer. With the delivery of polymeric carrier, the cellular local density of drug concentration would be higher than delivery without any assistance. Also, the polymeric shielding could decrease the rate of metabolism of drug in the body and keep the drug concentration in the blood at the proper range.
1. Taylor H. F. Vitamin Preparation an Method of Making Same. US Patent 2,183,053, Dec. 12, 1939.
2. Anderson, J. M.; Shive, M. S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 1997, 28, 5–24.
3. Tsutsumi, C.; Sakafuji, J.; Okada, M.; Oro, K.; Hata, K. Study of impregnation of poly(L-lactide-ran--caprolactone) copolymers with useful compounds in supercritical carbon dioxide. J. Mater. Sci. 2009, 44, 3533–3541.
4. Orloff, L. A.; Domb, A. J.; Teomim, D.; Fishbein, I.; Golomb, G. Biodegradable implant strategies for inhibition of restenosis. Adv. Drug Del. Rev. 1997, 24, 3–9.
5. Agrawal, C. M.; McKinney, J. S.; Lanctot, D.; Athanasiou, K. A. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials 2000, 21, 2443–2452.
6. (a) Rothen-Weinhold, A.; Besseghir, K.; Gurny, R. Analysis of the influence of polymer characteristics and core loading on the in vivo release of a somatostatin analogue. Eur. J. Pharma. Sci. 1997, 5, 303–313. (b) Hausberger, A. G.; Kenley, R. A.; DeLuca, P. P. Gamma irradiation effects on molecular weight and in vitro degradation of poly(D,L-lactide-co-glycolide) microparticles. Pharma. Res. 1995, 12, 851–855. (c) Hooper, K. A.; Cox, J. D.; Kohn, J. Lithium ionic conductivity in poly(ether urethanes) derived from poly(ethylene glycol) and lysine ethyl ester. J. Appl. Polym. Sci. 1997, 63, 1499–1510. (d) Nugroho, P.; Mitomo, H.; Yoshii, F.; Kuma, T. Degradation of poly(L-lactic acid) by γ-irradiation. Polym. Degrad. Stab. 2001, 72, 337–343. (e) Faisant, N.; Siepmann, J.; Oury, P.; Laffineur, V.; Bruna, E.; Haffner, J.; Benoit, J. P. The effect of gamma-irradiation on drug release from bioerodible microparticles: a quantitative treatment. Int. J. Pharma. 2002, 242, 281–284.
7. (a) Miller, N. D.; Williams, D. F. The in vivo and in vitro degradation of poly(glycolic acid) suture material as a function of applied strain. Biomaterials 1984, 5,365–368. (b) Arm, D. M.; Tencer, A. F. In vitro evaluation of heparinized Cuprophan hemodialysis membranes. J. Biomed. Mater. Res. 1997, 35, 433–441. (c) Edelman, E. R.; Fiorino, A.; Grodzinsky, A.; Langer, R. Mechanical deformation of polymer matrix controlled-release devices modulates drug release. J. Biomed. Mater. Res. 1992, 26, 1619–1631.
8. Kranz, H.; Ubrich, N.; Maincent, P.; Bodmeier, R. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. J. Pharma. Sci. 2000, 89, 1558–1566.
9. Andreopoulos, A. G. Plasticization of biodegradable polymers for use in controlled release. Clin. Mater. 1994, 15, 89–92.
10. Tsuji, H.; Mizumo, A.; Ikada, Y. Properties and morphology of poly(L-lactide). Part 3. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. J. Appl. Polym. Sci. 2000, 77, 1452–1464.
11. Makino, K.; Oshima, H.; Kondo, T. Mechanism of hydrolytic degradation of poly(L-lactide) microcapsules: effects of pH, ionic strength and buffer concentration. J. Microencapsulation 1986, 3, 203–212.
12. Lu, L.; Peter, S. J.; Lyman, M. D.; Lai, H. L.; Leite, S. M.; Tamada, J. A.; Uyama, S.; Vacanti, J. P.; Langer, R.; Mikos, A. G. In vitro and in vivo degradation of porous poly(D,L-lactic-co-glycolic acid) foams. Biomaterials 2000, 21, 1837–1845.
13. Yang, Y. Y.; Chia, H. H.; Chung, T. S. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J. Controlled Release 2000, 69, 81–96.
14. (a) Belbella, A.; Vauthier, C.; Fessi, H.; Devissaguet, J. P.; Puisieux, F. In vitro degradation of nanospheres from poly(D,L-lactides) of different molecular weights and polydispersities. Int. J. Pharma. 1996, 129, 95–102. (b) Hakkarainen, M.; Albertsson, A. C.; Karlsson, S. Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym. Degrad. Stab. 1996, 52, 283–291. (c) Lee, K. H.; Won, C. Y.; Chu, C. C.; Gitsov, I. Hydrolysis of biodegradable polymers by superoxide ions. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 3558–3567.
15. (a) Lu, L.; Garcia, C. A.; Mikos, A. G. In vitro degradation of thin poly(D,L-lactic-co-glycolic acid) films. J. Biomed. Mater. Res. 1999, 46, 236–244. (b) Grizzi, I.; Garreau, H.; Li, S.; Vert, M. Hydrolytic degradation of devices based on poly(D,L-lactic acid) size-dependence. Biomaterials 1995, 16, 305–311. (c) Witt, C.; Kissel, T. Morphological characterization of microspheres, films and implants prepared from poly(lactide-co-glycolide) and ABA triblock copolymers: is the erosion controlled by degradation, swelling or diffusion. Eur. J. Pharma. Biopharma. 2001, 51, 171–181. (c) Li, S.; Girod-Holland, S.; Vert, M. Hydrolytic degradation of poly(DL-lactic acid) in the presence of caffeine base. J. Controlled Release 1996, 40, 41–53. (d) Li, S.; Garreau, H.; Vert, M. Structure-property relationships in the case of the degradation of massive poly(-hydroxy acids) in aqueous media. Part 3. Influence of the morphology of poly(L-lactic acid). J. Mater. Sci. Mater. Med. 1990, 1, 198–206. (e) Karasulu, H. Y.; Ertan, G.; K¨ose, T. Modeling of theophylline release from different geometrical erodible tablets. Eur. J. Pharma. Biopharma. 2000, 49, 177–182.
16. (a) Tsuji, H.; Ikada, Y. Properties and morphology of poly(L-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(L-lactide) in phosphate-buffered solution. Polym. Degrad. Stab. 2000, 67, 179–189. (b) Nakamura, T.; Hitomi, S.; Watanabe, S.; Shimizu, Y.; Jamishidi, K.; Hyon, S. H.; Ikada, I. Bioabsorption of polylactides with different molecular properties. J. Biomed. Mater. Res. 1989, 23, 1115–1130. (c) Cai, H.; Dave, V.; Gross, R. A.; McCarthy, S. P. Effects of physical aging, crystallinity, and orientation on the enzymic degradation of poly(lactic acid). J. Polym. Sci., Part B: Polym. Phys. 1996, 34, 2701–2708. (d) Montaudo, G.; Rizzarelli, P. Synthesis and enzymatic degradation of aliphatic copolyesters. Polym. Degrad. Stab. 2000, 70, 305–314. (e) Hurrell, S.; Cameron, R. E. The effect of initial polymer morphology on the degradation and drug release from polyglycolide. Biomaterials 2002, 23, 2401–2409.
17. (a) Park, T. G. Degradation of poly(D,L-lactic acid) microspheres: effect of molecular weight. J. Controlled Release 1994, 30, 161–173. (b) Wang, N.; Qiu, J. S.; Wu, X. S. In Tailored Polymeric Materials for Controlled Delivery Systems; ACS Symposium Series 709; McCulloch, I., Shalaby, S. W., Eds; American Chemical Society: Washington, DC, 1998; pp 242–254. (c) Cam, D.; Hyon, S. H.; Ikada, Y. Biomaterials 1995, 16, 833–843. (d) Wu, X.; Wang, N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation.J. Biomater. Sci., Polym. Ed. 2001, 12, 21–34. (e) Omelczuk, M. O.; McGinity, J. W. The influence of polymer glass transition temperature and molecular weight on drug release from tablets containing poly(DL-lactic acid). Pharma. Res., 1992, 9, 26–32. (f) Liggins, R. T.; Burt, H. M. Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int. J. Pharma. 2001, 222, 19–33. (g) Wada, R.; Hyon, S. H.; Ikada, Y. Lactic acid oligomer microspheres containing hydrophilic drugs. J. Pharma. Sci. 1990, 79, 919–924.
18. (a) G¨opferich, A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17, 103–114. (b) Wang, N.; Wu, X. S. In Tailored Polymeric Materials for Controlled Delivery Systems; ACS Symposium Series 709; McCulloch, I., Shalaby, S. W., Eds; American Chemical Society: Washington, DC, 1998; 255–265. (c) Li, S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J. Biomed. Mater. Res.(Appl. Biomater.) 1999, 48, 342–353.
19. (a) Vert, M.; Li, S.; Spenlehauer, G.; Guerin, P. Bioresorbability and biocompatibility of aliphatic polyesters. J. Mater. Sci. Mater. Med. 1992, 3, 432–446. (b) Li, S.; Girard, A.; Garreau, H.; Vert, M. Enzymatic degradation of polylactide stereocopolymers with predominant D-lactyl contents. Polym. Degrad. Stab. 2001, 71, 61–67. (c) Li, S.; McCarthy, S. Influence of Crystallinity and Stereochemistry on the Enzymatic Degradation of Poly(lactide)s. Macromolecules 1999, 32, 4454–4456. (d) Hooper, K. L.; Macon, N. D.; Kohn, J. Comparative histological evaluation of new tyrosine-derived polymers and poly(L-lactic acid) as a function of polymer degradation. J. Biomed. Mater. Res. 1998, 41, 443–454 . (e) Leeslag, J. W.; Pennings, A. J.; Bos, R. R. M.; Rozema, F. R.; Boering, G. Resorbable materials of poly(L-lactide): VII. In vivo and in vitro degradation. Biomaterials 1987, 8, 311–314.
20. Dai, W.; Zhu, J.; Shangguan, A.; Lang, M. Synthesis, characterization and degradability of the comb-type poly(4-hydroxyl-ε-caprolactone -co-ε-caprolactone)-g-poly(L-lactide). Eur. Polym. J. 2009, 45, 1659–67.
21. Giunchedi, P.; Conti, B.; Scalia, S.; Conte, U. In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J. Controlled Release 1998, 56, 53–62.
22. Grayson, A. C. R.; Cima, M. J.; Langer, R. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials 2005, 26, 2137–2145.
23. Faisant, N.; Akiki, J.; Siepmann, F.; Benoit, J. P.; Siepmann, J. Effects of the type of release medium on drug release from PLGA-based microparticles: Experiment and theory. Int. J. Pharm. 2006, 314, 189–197.
24. Cai, Q.; Shi, G.; Bei. J,; Wang, S. Enzymatic degradation behavior and mechanism of Poly(lactide-co-glycolide) foams by trypsin. Biomaterials 2003, 24, 629–638.
25. Hwu, J. R.; Chen, J. H.; King, K. Y. -Silyl Carbonyl Groups as New Photodegradation Units in Poly(butadienes). Macromolecules 2004, 37, 3968–3969.
26. Hwu, J. R.; King, K. Y. Design, Synthesis, and Photo-degradation of New Silicon-containing Polyureas. Chem. Eur. J. 2005, 11, 3805–3815.
27. Huisgen, R. Adolf von Baeyer's Scientific Achievements — a Legacy. Angew. Chem. Int. Ed. Engl. 1986, 25, 297–311.
28. Kunz, M. A. For a biography of Victor Villiger. Ber. Dtsch. Chem. Ges. 1934, 67, 111–113.
29. Baeyer, A.; Villiger, V. Effect of Caro's reagent on ketones. Ber. Dtsch. Chem. Ges. 1899, 32, 3625–3633.
30. Ali, A. S.; Liepa, A. J.; Thomas, M. D.; Wilkie, J. S.; Winzenberg, K. N. Preparation of Cyclohexane-1,3-dione Herbicide Precursors by Birch Reduction of 3,5-Dimethoxyphenyl-Substituted Silane Derivatives. Australian Journal of Chemistry 1994, 47, 1205–1210.
31. Costanzo, M. J.; Patel, M. N.; Peterson, K. A.; Vogt, P. F. Ammonia-free Birch reductions with sodium stabilized in silica gel, Na–SG(I). Tetrahedron Lett. 2009, 50, 5463–5466