研究生: |
王人禾 Wang, Jen-Ho |
---|---|
論文名稱: |
鈦鋁基高熵介金屬化合物微結構與機械性質之研究 Microstructure and Mechanical Properties of TiAl-Based High-Entropy Intermetallic Compounds |
指導教授: |
張守一
Chang, Shou-Yi |
口試委員: |
蔡銘洪
Tsai, Ming-Hung 吳欣潔 Wu, Hsin-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 150 |
中文關鍵詞: | 介金屬化合物 、高熵合金 、微結構 、機械性質 、鈦鋁介金屬 |
外文關鍵詞: | Intermetallic Compounds, High-Entropy Alloys, Microstructure, Mechanical Properties, TiAl-Based Intermetallic |
相關次數: | 點閱:63 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TiAl基介金屬化合物因其低密度及高溫抗潛變等特性,在航太產業極具發展潛力,但長程有序結構所導致的室溫脆性一直是TiAl基介金屬合物無法突破的困境,雖然現已發展出許多延性改良方法,如調整微結構或添加微量元素等,但效果有限且具諸多限制,仍需找尋更好的延性改質方式。由於受到高熵合金概念的啟發,本實驗希望透過增加元素種類置換特定晶格點提升亂度的方式,降低介金屬化合物局部有序性,但仍保有介金屬長程週期性結構,以避免達特定應力即破裂的情形,並同時啟動多種滑移機制使變形更加均勻。目前仍缺乏針對極低密度且耐高溫之TiAl基高熵介金屬化合物的相關研究,因此本實驗根據相圖與混和焓等原則選用Hf、Nb、Ta、Zr等元素置換Ti之晶格點,逐步提高TiAl基高熵介金屬化合物的混合熵。藉由晶體結構鑑定、微結構觀察及成分分析瞭解到由於Al與Zr、Hf之間混和焓較Ti負,減少Zr、Hf含量可避免形成對機械性質有害的C14 Laves相;此外L10結構之單相高熵介金屬化合物經奈米壓痕及微米柱壓縮測試結果證實結合高熵合金概念的延性改質方式能提高加工硬化能力,為未來TiAl基高熵介金屬化合物的發展開拓新的道路。
TiAl intermetallic compounds display attractive properties such as low density and creep resistance for high temperature applications. However, the room temperature brittleness issue caused by the long-range ordered structure has always been difficult to overcome. Although many ductility improvement methods have been developed, such as adjusting the microstructure or adding minor elements, better ductility optimization methods are still needed to be explore. Inspired by the concept of HEAs, our experiment hopes to increase mixing entropy by replacing specific lattice points with diverse elements, and reduce the local order of compounds, but maintain the long-range periodic structure to avoid brittle fracture, and activates multiple slip mechanisms. However, there is still a lack of research on TiAl-based HEICs. Therefore, according to the principles of phase diagram and mixing enthalpy, our experiment selects Hf, Nb, Ta, Zr elements to replace Ti sublattice in L10 crystal structure, in order to decrease bonding energy of TiAl-based HEICs. Through crystal structure identification, microstructure observation and composition analysis, it is known that since the mixing enthalpy between Al and Zr, Hf is extreme negative compared to Ti, reducing the content of Zr and Hf can avoid the formation of C14 Laves phase which is harmful to ductility; in addition, the results of nanoindentation and micropillar compression tests on L10 single phase HEICs have confirmed that the ductile optimization method utilizing the concept of high-entropy can improve the work hardening ability, looking forward to open up a new path for the development of TiAl-based HEICs.
[1] P. Paufler and G. Schulze, "Plastic deformation of the intermetallic compound MgZn2." physica status solidi (b), 24.1 (1967): 77-87.
[2] Noebe, Ronald D., Randy R. Bowman, and Michael V. Nathal. "Physical and mechanical properties of the B2 compound NiAl." International Materials Reviews 38.4 (1993): 193-232.
[3] Franchy, R., M. Wuttig, and H. Ibach. "The adsorption of sulfur, carbon monoxide and oxygen on NiAl (111)." Surface Science 189 (1987): 438-447.
[4] Zhou, Yang, et al. "Phase equilibria in the Al-Co-Ni alloy system." Journal of Phase Equilibria and Diffusion 38 (2017): 630-645.
[5] Howe, James M. "Structure, composition and energy of solid–solid interfaces." Physical metallurgy. Elsevier, 2014. 1317-1451.
[6] Shi, Peijian, et al. "A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening." Journal of Materials Science & Technology 89 (2021): 88-96.
[7] Liu, C. T., E. H. Lee, and C. G. McKamey. "An environmental effect as the major cause for room-temperature embrittlement in FeAl." Scripta metallurgica 23.6 (1989): 875-880.
[8] Chen, G. L., and C. T. Liu. "Moisture induced environmental embrittlement of intermetallics." International materials reviews 46.6 (2001): 253-270.
[9] Stoloff, No S., and C. T. Liu. "Environmental embrittlement of iron aluminides." Intermetallics 2.2 (1994): 75-87.
[10] George, E. P., et al. "Environmental embrittlement and other causes of brittle grain boundary fracture in Ni3Al." Materials Science and Engineering: A 192 (1995): 277-288.
[11] Liu, C. T. "Recent advances in ordered intermetallics." Materials Chemistry and Physics 42.2 (1995): 77-86.
[12] Liu, C. T., and J. O. Stiegler. "Ductile ordered intermetallic alloys." Science 226.4675 (1984): 636-642.
[13] Lin, Ting-Chun, et al. "Small-Size-Induced plasticity and dislocation activities on non-charge-balanced slip system of ionic MgO pillars." Nano Letters 18.8 (2018): 4993-5000.
[14] Liu, C. T. "Physical metallurgy and mechanical properties of ductile ordered alloys (Fe, Co, Ni) 3 V." International metals reviews 29.1 (1984): 168-194.
[15] Aoki, K., and O. Izumi. "Improvement in room-temperature ductility of the intermetallic compound Ni3Al by ternary trace-element addition." Journal of the Japan Institute of Metals 43.4 (1979): 358-359.
[16] Liu, C. To, C. L. White, and J. A. Horton. "Effect of boron on grain-boundaries in Ni3Al." Acta metallurgica 33.2 (1985): 213-229.
[17] Clemens, Helmut, and Svea Mayer. "Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys." Advanced engineering materials 15.4 (2013): 191-215.
[18] Chen, Guang, et al. "Polysynthetic twinned TiAl single crystals for high-temperature applications." Nature materials 15.8 (2016): 876-881.
[19] Okamoto, H. "Al-Ni (aluminum-nickel)." Journal of phase equilibria 14.2 (1993): 257-259.
[20] Pollock, Tresa M. "Alloy design for aircraft engines." Nature materials 15.8 (2016): 809-815.
[21] Shi, Peijian, et al. "Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys." Science 373.6557 (2021): 912-918.
[22] Johnson, D. R., H. Inui, and M. Yamaguchi. "Crystal growth of TiAl alloys." Intermetallics 6.7-8 (1998): 647-652.
[23] B.K. Jeong, J.M. Kim, T.G. Lee, S.W. Kim & S.H. Ryu, Systematic investigation of the deformation mechanisms of a γ-TiAl single crystal, Scientific Reports 8.1 (2018): 15200.
[24] Schuster, Julius C., and Martin Palm. "Reassessment of the binary aluminum-titanium phase diagram." Journal of phase equilibria and diffusion 27 (2006): 255-277.
[25] Clemens, Helmut, and Svea Mayer. "Intermetallic titanium aluminides in aerospace applications–processing, microstructure and properties." Materials at high temperatures 33.4-5 (2016): 560-570.
[26] Yeh, J‐W., et al. "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes." Advanced engineering materials 6.5 (2004): 299-303.
[27] George, Easo P., Dierk Raabe, and Robert O. Ritchie. "High-entropy alloys." Nature reviews materials 4.8 (2019): 515-534.
[28] Yan, Xuehui, and Yong Zhang. "Functional properties and promising applications of high entropy alloys." Scripta Materialia 187 (2020): 188-193.
[29] Lim, X. Z. "Metal mixology." Nature 533.7603 (2016): 306-307.
[30] Cheng, Chun-Yang, et al. "Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys." Current Opinion in Solid State and Materials Science 21.6 (2017): 299-311.
[31] Tong, Yang, et al. "Severe local lattice distortion in Zr-and/or Hf-containing refractory multi-principal element alloys." Acta Materialia 183 (2020): 172-181.
[32] Cao, Boxuan, et al. "Precipitation-hardened high-entropy alloys for high-temperature applications: A critical review." MRS Bulletin 44.11 (2019): 854-859.
[33] Li, Weidong, et al. "Mechanical behavior of high-entropy alloys." Progress in Materials Science (2021): 100777.
[34] Li, Zezhou, et al. "Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys." Progress in Materials Science 102 (2019): 296-345.
[35] Gludovatz, Bernd, et al. "A fracture-resistant high-entropy alloy for cryogenic applications." Science 345.6201 (2014): 1153-1158.
[36] Naeem, Muhammad, et al. "Cooperative deformation in high-entropy alloys at ultralow temperatures." Science Advances 6.13 (2020): eaax4002.
[37] Joo, S-H., et al. "Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy." Materials Science and Engineering: A 689 (2017): 122-133.
[38] Wu, Xiaolei, et al. "Deformation nanotwins suppress shear banding during impact test of CrCoNi medium-entropy alloy." Scripta Materialia 178 (2020): 452-456.
[39] Zhang, ZiJiao, et al. "Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi." Nature communications 6.1 (2015): 10143.
[40] Yang, T., et al. "Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy." Scripta Materialia 164 (2019): 30-35.
[41] Laplanche, G., et al. "Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy." Acta Materialia 118 (2016): 152-163.
[42] Li, Zhiming, et al. "Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off." Nature 534.7606 (2016): 227-230.
[43] Huang, Hailong, et al. "Phase‐transformation ductilization of brittle high‐entropy alloys via metastability engineering." Advanced Materials 29.30 (2017): 1701678.
[44] Liu, Fangfei, Peter K. Liaw, and Yong Zhang. "Recent progress with BCC-structured high-entropy alloys." Metals 12.3 (2022): 501.
[45] Praveen, Sathiyamoorthi, and Hyoung Seop Kim. "High‐entropy alloys: potential candidates for high‐temperature applications–an overview." Advanced Engineering Materials 20.1 (2018): 1700645.
[46] Senkov, Oleg N., et al. "Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys." Intermetallics 19.5 (2011): 698-706.
[47] Bu, Yeqiang, et al. "Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys." Materials Today 46 (2021): 28-34.
[48] Zhou, Xinran, Sicong He, and Jaime Marian. "Cross-kinks control screw dislocation strength in equiatomic bcc refractory alloys." Acta Materialia 211 (2021): 116875.
[49] Maresca, Francesco, and William A. Curtin. "Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K." Acta Materialia 182 (2020): 235-249.
[50] Chen, Bing, et al. "Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys." Proceedings of the National Academy of Sciences 117.28 (2020): 16199-16206.
[51] Maresca, Francesco, and William A. Curtin. "Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys." Acta Materialia 182 (2020): 144-162.
[52] Xu, Shuozhi, et al. "Local slip resistances in equal-molar MoNbTi multi-principal element alloy." Acta Materialia 202 (2021): 68-79.
[53] Wang, Fulin, et al. "Multiplicity of dislocation pathways in a refractory multiprincipal element alloy." Science 370.6512 (2020): 95-101.
[54] Eleti, Rajeshwar R., et al. "Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy." Acta Materialia 183 (2020): 64-77.
[55] Lee, Chanho, et al. "Strength can be controlled by edge dislocations in refractory high-entropy alloys." Nature communications 12.1 (2021): 5474.
[56] Zhou, Naixie, et al. "Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics." Science Bulletin 64.12 (2019): 856-864.
[57] Wright, Andrew J., and Jian Luo. "A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective." Journal of Materials Science 55.23 (2020): 9812-9827.
[58] Yang, T., et al. "Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys." Science 362.6417 (2018): 933-937.
[59] Mu, Yongkun, et al. "A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility." Acta Materialia 232 (2022): 117975.
[60] Zhao, Y. L., et al. "Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy." Acta Materialia 188 (2020): 517-527.
[61] Yang, T., et al. "Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces." Science 369.6502 (2020): 427-432.
[62] Yao, Kunda, et al. "High-entropy intermetallic compound with ultra-high strength and thermal stability." Scripta Materialia 194 (2021): 113674.
[63] He, Q. F., et al. "A highly distorted ultraelastic chemically complex Elinvar alloy." Nature 602.7896 (2022): 251-257.
[64] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema & A.K. Niessen, Cohesion in Metals Transition metal alloys (1988).
[65] Muskeri, Saideep, et al. "Small-scale mechanical behavior of a eutectic high entropy alloy." Scientific reports 10.1 (2020): 2669.
[66] Shu, Shili, et al. "Effects of Fe, Co and Ni elements on the ductility of TiAl alloy." Journal of alloys and compounds 617 (2014): 302-305.
[67] Wang, Woei-Ren, Wei-Lin Wang, and Jien-Wei Yeh. "Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures." Journal of Alloys and Compounds 589 (2014): 143-152.
[68] Wang, Wenjie, et al. "Novel Ti-Zr-Hf-Nb-Fe refractory high-entropy alloys for potential biomedical applications." Journal of Alloys and Compounds 906 (2022): 164383.
[69] Su, Ruizhe, et al. "High-strength nanocrystalline intermetallics with room temperature deformability enabled by nanometer thick grain boundaries." Science Advances 7.27 (2021): eabc8288.
[70] Vamsi, K. V., and S. Karthikeyan. "Deformation modes and yield strength anomaly in L12 compounds." Journal of Alloys and Compounds 860 (2021): 158411.
[71] Zhang, Jun, et al. "Elemental partitions and deformation mechanisms of L12-type multicomponent intermetallics." Acta Materialia 219 (2021): 117238.
[72] Lee, Taegu, et al. "First-principles study of the ternary effects on the plasticity of γ-TiAl crystals." Scientific Reports 10.1 (2020): 21614.
[73] Sriram, S., V. K. Vasudevan, D. M. Dimiduk. "Dislocation structures and deformation behaviour of Ti-50/52Al alloys between 77 and 1173 K." Materials Science and Engineering: A 192 (1995): 217-225.
[74] Yamaguchi, M., et al. "Recent progress in our understanding of deformation and fracture of two-phase and single-phase TiAl alloys." Materials Science and Engineering: A 213.1-2 (1996): 25-31.
[75] Inui, H., et al. "Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti− 56 at.% Al)." Philosophical Magazine A 75.2 (1997): 395-423.
[76] Kim, Ji Young, et al. "Origin of enhanced room temperature ductility in TiAl alloys: Reducing activation difference of deformation mechanism of γ phase." Journal of Alloys and Compounds 899 (2022): 163307.
[77] Kittel, Charles, and Paul McEuen. Introduction to solid state physics. John Wiley & Sons, 2018.
[78] Court, S. A., V. K. Vasudevan, and H. L. Fraser. "Deformation mechanisms in the intermetallic compound TiAl." Philosophical Magazine A 61.1 (1990): 141-158.