研究生: |
蔡秉宏 Tsai, Ping Hung |
---|---|
論文名稱: |
高介電係數材料、堆疊式結構與高功函數金屬閘極應用於電荷陷阱式快閃記憶體元件之研究 Application of High-k Material, Stacked Structure and Hihg Work-Function Metal Gate on Charge Trapping Type Flash Memory Devices |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 高介電係數材料 、堆疊式結構 、高功函數金屬閘極 、電荷陷阱式快閃記憶體 、原子層沉積技術 |
外文關鍵詞: | High-k Material, Stacked Structure, High Work-Function Metal Gate, Charge Trapping Type Flash Memory, Atomic Layer Deposition |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The polysilicon-oxide-nitride-oxide-silicon (SONOS) flash memory has recently drawn noteworthy attention for applications in electrically erasable and programmable read-only memories (EEPROMs) due to the advantages of smaller cell size and better endurance characteristics for memory operation. Besides, the SONOS device is also one of the most promising candidates to realize the continuous vertical scaling on flash memory through the mechanism of charge trapping in its structure. However, programming/erasing speed, operating voltage and over-erasing are the main bottlenecks for SONOS devices in attempting to replace those floating-gate ones. Moreover, the phenomenon of electrons back tunneling (EBT) is known as a serious concern for NAND devices using Fowler-Nordheim (FN) operating due to the limitation of the low-erase states Vth during erasing. Many researches have been performed to overcome these limitations to replace the silicon nitiride. In this work, effects of the applications of stacked structure, high-k material and high work-function metal gate electrodes for charge trapping type flash devices were investigated.
For tunneling oxide, the application of multilayer dielectric stacks is promising to realize tunnel barrier engineering. With a suitable combination of stacked tunneling oxide (low-k/high-k), a lower operating voltage or higher programming speed can be achieved due to the engineered band diagrams. Furthermore, the high-k dielectric is considered for SiO2 replacement in sub-100 nm metal–oxide–semiconductor (MOS) technologies and represents a viable alternative for low-voltage, low-power sub-100-nm NVM nodes. Thus, the effects of stacked tunneling oxide on operating characteristics of charge trapping type flash devices were investigated.
For charge trapping layer, many researches have been performed by adopting various high-k materials to replace the silicon nitiride. Since the flash device with trapping layer of HfO2 has serious problem in retention characteristics and that with Al2O3 layer has the problem of low operation speed, flash device with HfAlO trapping layer seems to be a more feasible candidate because it is capable of possessing suitable charge-retention ability while keeping good over-erase resistance of HfO2 and reasonably fast operation speed. However, the optimal compositions in HfAlO charge trapping layer and the relevant physical mechanisms still remain unclear and thus are worth further exploring. In this work, operation performance of flash device with TaN/Al2O3/HfAlO/SiO2/Si (MAHOS) structure and various Al compositions in the HfAlO charge-trapping layer tuned by an atomic layer deposition (ALD) system were studied.
Besides, some literatures have reported the application of using band-gap engineering on the charge-trapping layer. Their results show enhancement on device operating and reliability performances, which present viable alternatives for low-voltage, low-power sub-100-nm NVM nodes. Among various potential options, the stacked high-k charge trapping layer in flash device has rarely been reported. Thus, effects of various single and stacked high-k trapping layers on the operating characteristics of charge trapping type flash devices are investigated and compared.
Finally, many researches have focused on high work function metal gate electrode due to the difficulties on satisfying NAND specifications and good retention characteristics. However, the integration of both high-WF metal gate and high-k trapping layer have rarely been reported. In this work, the effects of various metal gates and blocking oxide on operating characteristics of conventional SONOS devices were investigated. Then, the integration of MoN metal gate and HfAlO charge trapping layer were also studied. High speed operation and good reliability of charge-trapping type NVM were demonstrated.
隨著可攜式數位電子裝置產品之普及,非揮發性記憶體(NVM)因此有著極為蓬勃的發展。然而,當記憶體元件發展到次微米以下時,會面臨到操作速度與可靠度方面的瓶頸。在眾多替代方案中,SONOS結構因其結構發展成熟加上符合CMOS標準製程,因此成為具有高度潛力的取代方案。然而,隨著SONOS結構中的穿隧氧化層逐漸變薄,如何使該元件具有足夠的電荷保存力(data retention)將是SONOS需要面臨的問題。此外,在操作速度偏慢、操作電壓方面偏大及過度抹除(over-erase)等等的瓶頸,則是另外需要改善的課題。
首先,我們規劃了一系列採用堆疊式結構應用於charge trapping type flash元件之穿遂氧化層與電荷儲存層上的研究,預期將因此提升元件操作速度與電荷保存力等特性。我們先將堆疊式穿遂氧化層與電荷儲存層應用於傳統SONOS結構上,實驗結果可以觀察到當採用堆疊式結構取代傳統單一層tunneling oxide與trapping layer時,將可提昇元件的操作特性。
針對過度抹除與操作電壓方面等的瓶頸,我們將研究重心聚焦於電荷儲存層的變動。使用high-k材料(HfxAlyO)替換傳統Si3N4作為電荷儲存層,並針對此high-k材料中各元素之比例來做進一步的研究。實驗結果顯示,若以HfxAlyO作為電荷儲存層時,當元件之Hf/Al具有適當的比例下,將會得到較佳的快閃記憶體操作特性。接著進一步綜合以上兩者的研究結果,我們將堆疊結構搭配應用high-k trapping layer的charge trapping type元件上。首先利用調整Hf╱Al含量所形成的不同HfxAlyO材料,來調變材料能隙、缺陷數量與能階深淺等的物理特性。接著,再利用堆疊不同Hf╱Al含量之HfxAlyO層作為電荷儲存層的結構,以調整出具有最佳操作特性的電荷儲存層。
最後,由於之前研究之元件在抹除速度上仍有進一步改進的空間,因此我們另外規劃了一系列採用高功函數金屬閘極與高介電係數阻擋層於charge trapping type元件上的研究,預期會在抹除速度上帶來改進。首先,我們先將高功函數金屬MoN應用於傳統SONOS結構,實驗結果驗證了當高功函數金屬閘極被採用時,的確會改進抹除速度。因此,我們便繼續將此高功函數金屬搭配應用high-k電荷儲存層,並透過搭配高介電係數阻擋層來保持高功函數金屬之功函數值,而實驗的結果,也再次驗證了我們的預測。
[1] S. Mukherjee, T. Chang, R. Pang, M. Knecht, D. Hu, “A single transistor EPROM cell and its implementation in a 512 K CMOS EPROM,” in IEDM Tech. Dig., pp.616-619, 1985.
[2] V. N. Kynett et al., “An in-system reprogrammable 256K CMOS Flash memory2,” in ISSCC Conf. Proc.,, pp.132, 1988.
[3] R.Bez, P. Cappelletti, “Flash Memory and Beyond,” in Symp. VLSI-TSA Tech. Dig., pp.84-87, 2005.
[4] Y. S. Shin, “Non-volatile Memory Technologies for Beyond 2010,” in Symp. VLSI Circuit Dig. Tech., pp.156-159, 2005.
[5] F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, “New ultra high density EPROM and Flash with NAND structure cell,” in IEDM Tech. Dig., pp.552-555, 1987.
[6] D. Kahng, S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. Journal., vol. 46, pp. 1288, 1967.
[7] De Salvo Barbara, C. Gerardi, R.van Schaijk, S. A. Lombardo, D. Corso, C. Plantamura, S. Serafino, G.. Ammendola, M. van Duuren, P. Goarin, W. Y. Mei, K. van der Jeugd, T. Baron, M. Gely, P. Mur, S. Deleonibus, “Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps (Silicon Nanocrystals, SONOS),” IEEE Trans. Device and Materials Reliability, vol..4, no. 3, pp. 377-389, 2004.
[8] B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt, K. De Meyer, “VARIOT: a novel multilayer tunnel barrier concept for low-voltage nonvolatile memory devices,” IEEE Electron Device Lett., vol. 24, no. 2, pp.99-101, 2003.
[9] Z. L. Huo, J. K. Yang, S. H. Lim, S. J. Baik, J. Lee, J. H. Han, I.-S. Yeo, U.-I. Chung, J. T. Moon, B.-II Ryu, “Band Engineered Charge Trap Layer for highly Reliable MLC Flash Memory,” in VLSI Symp. Tech. Dig., 2007, pp. 138-139.
[10] Y. N. Tan, W. K. Chim, B. J. Cho, W. K. Choi, “Over-Erase Phenomenon in SONOS-Type Flash Memory and its Minimization Using a Hafnium Oxide Charge Storage Layer,” IEEE Trans. Electron Devices, vol.51, no. 7, pp. 1143-1147, 2004.
[11] H. Reisinger, M. Franosch, B. Hasler, T. B□hm, “A novel SONOS structure for nonvolatile memories with improved data retention,” in Symp. VLSI Tech. Dig., pp. 113-114, 1997.
[12] S. Choi, M. Cho, H. Hwang, “Improved metal–oxide–nitride–oxide–silicon-type flash device with high- k dielectrics for blocking layer,” J. Appl. Phys., vol. 94, no. 8, pp. 5408-5410, 2003.
[13] S. Jeon, J. H. Han, J. H. Lee, S. Choi, H. Hwang, C. Kim, “High Work-Function Metal Gate and High-k Dielectrics for Charge Trap Flash Memory Device Applications,” IEEE Trans. Electron Devices, vol. 52, no.12, pp.2654-2659, 2005.
[14] Ofer Sneh, Robert B.Clark-Phelps, Ana R.Londer gan, Jereld Winkler, Thomas E.Seidel, “Thin film atomic layer deposition equipment for semiconductor processing ,” Thin Solid Films, vol. 402, pp.248-261, 2002.
[15] Markku Leskela*, Mikko Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films, vol. 409, pp.138-146, 2002.
[16] http://sc.el.utwente.nl/research/projects/HighKOxide/frame.html
[17] D. Briggs, M. P. Seah, “Practical surface analysis by Auger and X-ray photoelectron spectroscopy,” John Wiley & Sons, New York (1994).
[18] N. Kato, “X-ray diffraction,” McGraw-Hill (1974).
[19] J. R. Hauser and K. Ahmed, “Characterization of ultrathin oxides using electrical C-V and I-V measurement,” Char. Metrol. ULSI Technol., pp. 235-230, 1998.
[20] J. R. Hauser, K. Ahmed, “Characterization metrology ULSI technology,” pp230, 1998.
[21] S. Zafar, C. Cabral, Jr., R. Amos, A. Callegari, “A method for measuring barrier heights, metal work functions and fixed charge densities in metal/SiO2/Si capacitors,“ Appl. Phys. Lett., vol.80, no. 25, pp.4858-4860, 2002.
[22] M. Lenzlinger, E. H. Snow, “Fowler-Nordheim tunneling in thermally grown SiO2,” J. Appl. Phys., vol. 40, pp. 278, 1969.
[23] S. Tam, P. -K. Ko, C. M. Hu, R.S. Muller, ”Lucky-electron model of channel hot-electron injection in MOSFETs,” IEEE Trans. Electron Devices, vol. 31, no.9, pp.1116-1125, 1984.
[24] K. Hasnat, C. -F.Yeap, S. Jallepalli, W. -K. Shih, S. A. Hareland, V. M. Agostinelli, Jr., A. F. Tasch, Jr., C. M. Maziar, ”A pseudo-lucky electron model for simulation of electron gate current in submicron NMOSFET’s,” IEEE Trans. Electron Devices, vol.43, no.8, pp.1264-1273,1996.
[25] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka, H. Miyoshi, “Novel Electron Injection Method Using Band-to-Band Tunneling Induced Hot Electron (BBHE) for Flash Memory with a P-channel Cell,” in IEDM Tech. Dig., pp.279-282, 1995.
[26] K. Gopalakrishnan, R. Woo, R. Shenoy, Y. Jono, P. B. Griffin, J. D. Plummer, “Novel Very High IE Structures Based on the Directed BBHE Mechanism for Ultra low-Power Flash Memories,” IEEE Electron Device Letters, vol. 26, pp. 212-215, 2005.
[27] “Front-end processing,” in International Technology Roadmap for Semiconductors (ITRS), 2001, pp. 41.
[28] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White, “Design and Scaling of a SONOS Multi-dielectric Device for Nonvolatile Memory Applications,” IEEE Trans. Compon., Packag., Manuf. Technol. A, vol. 17, no. 3, pp. 390-397, 1994.
[29] J. K. Bu, M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid State Electron., vol. 45, no. 1, pp. 113-120, 2001.
[30] T. Sugizaki, M. Kohayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, H. Tanaka, “Novel Multi-bit SONOS Type Flash Memory Using a Highk Charge Trapping Layer,” in Symp. VLSI-TSA Tech. Dig., pp.27-28, 2003.
[31] Y. Shin, C. Lee, S. Hur, J. Choi, K. Kim, “High reliable SONOS-type NAND flash memory cell with Al2O3 for top oxide,” in Proc. IEEE Nonvolatile Semiconductor Memory Workshop, pp. 58–59, 2003.
[32] S. Jeon, J. H. Han, J. Lee, S. Choi, H. Hwang, C. Kim , “Impact of metal work function on memory properties of charge-trap flash memory devices using Fowler-Nordheim P/E mode,” IEEE Electron Device Letters, pp. 486-488, 2006.
[33] T. S. Chen, K. H. Wu, H. Chung, C. H. Kao, “Performance Improvement of SONOS Memory by Bandgap Engineering of Charge-Trapping Layer,” IEEE Trans. Electron Devices, vol.25, no. 4, pp. 205-207, 2004.
[34] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, T. H. Ng, B. J. Cho, “High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation,” in IEDM Tech. Dig., pp. 889-892, 2004.
[35] B. Govoreanu, P. Blomme, J. Van Houdt, and K. De Meyer, “Enhanced Tunneling Current Effect for Nonvolatile Memory Applicttions,” Jpn. J. Appl. Phys., Vol 42, pp. 2020-2024, 2003.
[36] X. Wang, Jun Liu, W. Bai, D. L. Kwong, “A Novel MONOS-Type Nonvolatile Memory Using High-k Dielectrics for Improved Data Retention and Programming Speed,” IEEE Trans. Electron Devices, vol.51, no. 4, pp. 597-602, 2004.
[37] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, B. J. Cho, “Hafnium Aluminum Oxide as Charge Storage and Blocking-Oxide Layers in SONOS-Type Nonvolatile Memory for High-Speed Operation,” IEEE Trans. Electron Devices, vol.53, no. 4, pp. 654-661, 2006.
[38] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, T. P. Ma, “Effect of Al Inclusion in HfO2 on the Physical and Electrical Properties of the Dielectrics,” IEEE Electron Device Letters., vol. 23, no.11, pp. 649-651, 2002.
[39] H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, M. S. Joo, D.-L. Kwong, J. S. Pan, C. H. Ang, C. H. Ang, J. Z. Zheng, S. Ramanathan, “Energy gap and band alignment for (HfO2)x(Al2O3)1–x on (100) Si,“ Appl. Phys. Lett., vol. 81, pp. 376-378, 2002.
[40] S. Nakata, K. Saito, M. Shimada, “Non-volatile Al2O3 memory using an Al-rich structure as a charge-storing layer,” IEE Electron. Lett., vol. 41, no. 12, pp. 721-722, 2005.
[41] S. Minami, and Y. Kamigaki, “New scaling guidelines for MNOS nonvolatile memory devices,” IEEE Trans. Electron Devices, ED-38, pp. 2519–2526, 1991.
[42] P.H. Tsai, K. S. Chang-Liao, C. Y. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin, L. S. Lee, and M.-J. Tsai, “Novel SONOS-Type Nonvolatile Memory Device With Optimal Al Doping in HfAlO Charge-Trapping Layer,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 265-268, 2008.
[43] K. K. Likharev, “Layered tunnel barriers for nonvolatile memory devices,“ Appl. Phys. Lett., vol.73, pp. 2137-2139, 1998.
[44] Z. L. Huo, J. K. Yang, S. H. Lim, S. J. Baik, J. Lee, J. H. Han, I.-S. Yeo, U.-I. Chung, J. T. Moon, B.-II Ryu, “Band Engineered Charge Trap Layer for highly Reliable MLC Flash Memory,” in VLSI Symp. Tech. Dig., pp. 138–139, 2007.
[45] J. Buckley, M. Bocquet, G. Molas, M. Gely, P. Brianceau, N. Rochat, E.Martinez, F.Martin, H. Grampeix, JP. Colonna, A.Toffoli, V. Vidal, C. Leroux, G. Ghibaudo, G. Pananakakis, C. Bongiorno, D. Corso, S. Lombardo, B. DeSalvo, S.Deleonibus, “In-depth Investigation of Hf-based High-k Dielectrics as Storage Layer of Charge-Trap NVMs,” IEDM Tech. Dig., pp. 1-4, 2006.
[46] L.Chihoon, C. Jihoon, C. Moonju, J. D. Seok, H. C. Seong, K. H. Joon, ”Phosphorus ion implantation and POCl3 doping effects of n+-polycrystalline-silicon/high- kgate dielectric (HfO2 and Al2O3) films,“ Appl. Phys. Lett., vol.84, pp. 2868-2870, 2004.
[47] W. T. Lu, P. C. Lin, T. Y. Huang, C. H. Chien, M. J. Yang, I. J. Huang, Peer Lehnen, “The characteristics of hole trapping in HfO2 /SiO2 gate dielectrics with TiN gate electrode,“ Appl. Phys. Lett., vol.85, pp. 3525-3527, 2004.
[48] J.-D. Lee, S.-H. Hur, J.-D. Choi, “Effects of floating-gate interference on NAND Flash memory cell operation,” IEEE Electron Device Lett., vol. 23, no. 5, pp. 264–266, 2002.
[49] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, K. Kim, “ A Novel SONOS Structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memeries,” in IEDM Tech. Dig., pp. 613-616, 2003.
[50] C. Ren, H. Y. Yu, J. F. Kang, Y. T. Hou, M. -F. Li, W. D. Wang, D. S. H. Chan, D. -L. Kwong, “Fermi-Level Pinning Induced Thermal Instability in the Effective Work Function of TaN in TaN/SiO2 Gate Stack,” IEEE Electron Device Lett., vol. 25, no. 3, pp. 123-125, 2004.
[51] H. Alshareef*, K. Chio, H.C. Wen, H.F. Luan, R. Harris, Y. Senzaki, P. Majhi, B.H. Lee, “Process-Induced Work Function Modulations of TaAlN Metal Gate,” in 2nd international Conference on Advanced Gate Stack Technology, Austin, TX., 2005.
[52] C. H. Lee, S. H. Hur, Y. C. Shin, J. H. Choi, D. G. Park, K. Kim, “Charge-trapping device structure of SiO2/ SiN/ high-κ dielectric Al2O3 for high-density flash memory,” Appl. Phys. Lett., vol. 86, no. 15, pp. 152908-1–152908-3, 2005.
[53] T. L. Li, W. L. Ho, H. B. Chen, Howard C.-H. Wang, C. Y. Chang, C. M. Hu, “Novel Dual-Metal Gate Technology Using Mo−MoSix Combination,” IEEE Trans. Electron Devices, vol. 53, no. 6, pp. 1420-1426, 2006.