簡易檢索 / 詳目顯示

研究生: 陳宗德
Chen, Tsung-Te
論文名稱: 接合正反相結構有機太陽能電池之研究
Investigation for Lamination of Normal and Inverted Organic Solar Cells
指導教授: 洪勝富
Horng, Sheng-Fu
孟心飛
Meng, Hsin-Fei
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 73
中文關鍵詞: 有機太陽電池反相結構太陽能電池接合串疊元件黏著劑
外文關鍵詞: organic solar cell, inverted solar cell, lamination, tandem cell, glue
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於各項能源的短缺日漸嚴重,使得太陽能電池發展逐漸備受重視,各國皆投以人力研究。無機太陽電池現今雖然已具備高效率、高穩定性等優勢,但其高成本仍是商業應用的一大致命傷;相反地,有機太陽電池不僅製程簡單、成本低廉,軟性基板具可撓性;噴墨印刷及刮刀的技術更可以將元件朝向大面積、大尺寸發展,以上優點都使得有機太陽電池在未來的發展上極具潛力。
    本研究首先針對運用在反相結構太陽能電池電子與電洞傳輸層的各種材料進行測試,包含了蒸鍍、溶液製程的方式;而主動層材料我們選擇BHJ系統,將P3HT混合PCBM溶於鄰-二氯苯 (DCB) ,利用旋轉塗佈的動方式進行成膜。接著選用適當的電子與電洞傳輸層運用在反結構裡,與傳統的正結構元件進行接合 (lamination) 的動作。
    研究結果利用金屬室溫下接合的方式成功將正反兩結構的元件結合在一起,成為一串疊 (tandem) 元件,PCE有0.61%、Voc ~ 1.15V,待元件調整到匹配最佳化後,相信未來可達高效率且高穿透的元件。本研究也另外使用了利用黏著劑D-sorbitol來進行元件的接合,此方向雖然還沒有明顯突破的進展,但已初步證實本研究在此工作所選用來進行接合的元件結構是不可行的,需做點改變使結構更加完善。


    中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅴ 第一章 序論 1 1.1 研究背景 1 1.1.1 前言 1 1.1.2 太陽能電池產業發展 1 1.1.3 有機高分子太陽能電池發展 2 1.2 研究動機 4 1.2.1 有機高分子太陽能電池的優點 4 1.2.2 P3HT與PCBM混合的有機高分子太陽能電池 5 1.2.3 為何發展反相太陽能電池 5 1.3 文獻回顧 5 1.3.1 反相結構太陽能元件 5 1.3.2 接合技術元件 9 1.4 論文架構 11 第二章 實驗原理 12 2.1 太陽電池元件簡介 12 2.1.1 基本原理 12 2.1.2 元件參數 15 2.1.3 操作原理 18 2.2 共軛高分子材料特性 21 2.3 有機共軛高分子太陽電池的元件結構與能帶圖 23 2.3.1 能帶理論 23 2.3.2 元件結構與能帶圖 24 第三章 實驗方法與流程 26 3.1 ITO玻璃基板圖樣化 26 3.1.1 基板切割與清洗 26 3.1.2 乾式光阻黏貼 26 3.1.3 曝光 26 3.1.4 顯影 27 3.1.5 蝕刻 27 3.2 圖樣化ITO玻璃基板清洗 28 3.3 Inverted Cell氧化物及高分子之成膜 28 3.3.1 ITO玻璃基板親水性 28 3.3.2-a 電子傳輸層I - 碳酸銫(Cs2CO3)旋轉塗佈 28 3.3.2-b 電子傳輸層II - PBD旋轉塗佈 29 3.3.3 P3HT / PCBM主動層 29 3.3.4-a 電洞傳輸層I - 三氧化鉬(MoO3)蒸鍍 30 3.3.4-b 電洞傳輸層II - PEDOT 31 3.3.4-c 電洞傳輸層III - DMFL-NPB 31 3.4 Normal Cell各層高分子之成膜 33 3.4.1 ITO玻璃基板親水性 33 3.4.2 電洞傳輸層 - PEDOT:PSS 33 3.4.3 P3HT / PCBM主動層 34 3.5 電極蒸鍍 34 3.6 封裝 35 3.7 量測 36 3.8 接合(Laminate)元件的製程 37 第四章 實驗結果與討論 40 4.1 反相結構太陽能電池基本測試 40 4.1.1 蒸鍍三氧化鉬(MoO3) 40 4.1.2 碳酸銫(Cs2CO3)轉速測試 41 4.1.3 結論 43 4.2 全溶液製程的反相結構太陽能電池 43 4.2.1 PEDOT當電洞傳輸層 43 4.2.2 DMFL-NPB當電洞傳輸層 46 4.2.3 結論 53 4.3 正相與反相結構太陽能電池接合 54 4.3.1 利用金屬室溫下接合 54 4.3.2 利用黏著劑D-sorbitol接合 60 4.3.3 結論 65 4.4 其它延伸(相關)研究 66 4.4.1 PBD當反結構的電子傳輸層 66 第五章 總結 71 參考文獻 72

    [1] K. M. Coakley,Wudl and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533 (2004).
    [2] Harald Hoppe, and Niyazi Serdar Sariciftci, “Organic solar cell: An review,” J. Mater. Res., Vol. 19, No. 7, Jul 2004.
    [3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
    [4] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat.
    Mater. 4, 864 (2005).
    [5] Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry, and David L. Carroll,“Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaic,” Appl. Phys. Lett. 90, 163511 (2007).
    [6] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
    [7] C. Melzer, E. J. Koop, V. D. Mihailetchi, and P. W. M. Blom, Adv. Funct. Mater. 14, 865 (2004).
    [8] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, “Efficient inverted solar cells,” Appl. Phys. Lett. 88, 253503 (2006).
    [9] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bilk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89, 143517 (2006).
    [10] C. Waldaul, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
    [11] Hua-Hsien Liau, Li-Min Chen, Zheng Xu, Gang Li, and Yang Yang,“Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92, 173303 (2008).
    [12] Chen Tao, Shengping Ruan, Xindong Zhang, Guohua Xie, Liang Shen, Xiangzi
    Kong, Wei Dong, Caixia Liu, and Weiyou Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93, 193307 (2008).
    [13] Yee-Fun Lim, Sungsoo Lee, David J. Herman, Matthew T. Lloyd, John E. Anthony, and George G. Malliaras, “Spray-deposited poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) top electrode for organic solar cells, ” Appl. Phys. Lett. 93, 193301 (2008).
    [14] Jianyong Ouyang and Yang Yang, “Conducting Polymer as Transparent Electric Glue”, Adv. Mater. 2006, 18, 2141–2144.
    [15] Jinsong Huang, Gang Li, and Yang Yang, “A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process”, Adv. Mater. 2008, 20, 415–419.
    [16] S. R. Tseng, S. C. Lin, Hsin-Fei Meng, H. H. Liao, C. H. Yeh, H. C Lai, S. F. Horng, and C. S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88, 163501 (2006).
    [17] Seok-In Na, Seok-Soon Kim, Jang Jo, and Dong-Yu Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes”, Adv. Mater. 2008, 20, 1–7
    [18] Y. Sahin, S. Alem, R. de Bettignies, and J. M. Nunzi, Thin Solid Films 476, 340 (2005).
    [19] M. Y. Song, K. J. Kim, and D. Y. Kim, Sol. Energy Mater. Sol. Cells 85, 31 (2005).
    [20] A. Watanabe and A. Kasuya, Thin Solid Films 483, 358 (2005).
    [21] M. P. de Jong, L. J. van Ijzendoom, and M. J. A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000).
    [22] G. Greczynski, Th. Kugler, M. Keil, W. Osikowicz, M. Fahlman, and W. R. Salaneck, J. Electron Spectrosc. Relat. Phenom. 121, 1 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE