研究生: |
林育正 |
---|---|
論文名稱: |
Plantwide Control and Assessments of Flexible Operation of CO2 Capture System Using Monoethanolamine Scrubbing 二氧化碳捕捉製程之整廠控制 與彈性操作策略之評估 |
指導教授: | 鄭西顯 |
口試委員: |
汪上曉
張玨庭 陳誠亮 錢義隆 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 二氧化碳捕捉 、整廠控制 、彈性操作 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Over the past few decades, anthropogenic carbon emission has been recognized as an important contributing factor to global warming and climate change. Therefore, carbon dioxide capture, sequestration and utilization have become new focuses of chemical process technology research. Flue gas from coal-fired power plant is the main source of CO2 emission. In order to capture and separate CO2 effectively, several types of technologies have been developed. Among these methods, absorption/stripping CO2 capture system is considered the most feasible method to deal with existing power plants.
In this thesis, plantwide control of CO2 capture plant was investigated using dynamic simulation. To stabilize system and maintain capture efficiency, the following control structure was proposed. In this scheme, CO2 removal target is guaranteed using the lean solvent feed rate to the top of the absorber column. In order to operate process with an appropriate lean solvent loading, the temperature at the bottom of stripper is controlled by reboiler duty. This control structure was tested by disturbances involving inlet flue gas flow, CO2 concentrations and H2O concentrations as well as changes in removal targets. Dynamic simulations showed that system can achieve removal targets, stabilize quickly while keeping optimum lean loading constant. To ensure minimum energy consumption, optimizing control can be carried out by adjusting the setpoint of reboiler temperature.
For a CO2 capture plant integrated with power plant, about 20% penalty of electricity output is incurred. To meet electricity demand in peak load period, flexible operation decreasing CO2 capture rate can be implemented to increase power plant output. However, large variation of liquid and gas flow during flexible operation may cause fluctuations to packed columns. Operating strategies were proposed and testified through dynamic simulations. In varying lean solvent strategy, by delivering all flue gas to absorber, instability of absorber could be partly reduced. Capture rate is changed by varying lean solvent flow rate. Optimum lean solvent loading is guaranteed by controlling reboiler temperature. In varying lean loading strategy, capture rate is shifted by varying lean solvent loading so that lean solvent rate is unchanged. Stripper’s fluctuation can be avoided by recycling part of CO2 product vapor. Although in this strategy energy requirement for regeneration will slightly increase, operating stability is promised.
1. Metz, B.; Davidson, O. R.; Bosch, P. R.; Dave, R.; Meyer, L. A. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change; 2007.
2. U. S. EIA, Emissions of Greenhouse Gases in the United States 2008; U.S. Department of Energy: Washington, DC, 2009.
3. Carapellucci, R.; Milazzo, A., Membrane systems for CO2 capture and their integration with gas turbine plants. P I Mech Eng a-J Pow 2003, 217 (A5), 505-517.
4. Tobiesen, F. A.; Svendsen, H. F.; Mejdell, T., Modeling of blast furnace CO2 capture using amine absorbents. Ind Eng Chem Res 2007, 46 (23), 7811-7819.
5. Grande, C. A.; Ribeiro, R. P. P. L.; Rodrigues, A. E., CO2 Capture from NGCC Power Stations using Electric Swing Adsorption (ESA). Energ Fuel 2009, 23, 2797-2803.
6. IEA Greenhouse Gas R & D Programme.; Feb., 2000.
7. Freguia, S.; Rochelle, G. T., Modeling of CO2 capture by aqueous monoethanolamine. Aiche Journal 2003, 49 (7), 1676-1686.
8. Zhang, Y.; Chen, H.; Chen, C. C.; Plaza, J. M.; Dugas, R.; Rochelle, G. T., Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution. Ind Eng Chem Res 2009, 48 (20), 9233-9246.
9. Alie, C.; Backham, L.; Croiset, E.; Douglas, P. L., Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method. Energ Convers Manage 2005, 46 (3), 475-487.
10. Abu-Zahra, M. R. M.; Schneiders, L. H. J.; Niederer, J. P. M.; Feron, P. H. M.; Versteeg, G. F., CO2 capture from power plants. Part I. A parametric study of the technical-performance based on monoethanolamine. Int J Greenh Gas Con 2007, 1 (1), 37-46.
11. Ziaii, S.; Rochelle, G. T.; Edgar, T. F., Dynamic Modeling to Minimize Energy Use for CO2 Capture in Power Plants by Aqueous Monoethanolamine. Ind Eng Chem Res 2009, 48 (13), 6105-6111.
12. Lawal, A.; Wang, M.; Stephenson, P.; Yeung, H., Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants. Fuel 2009, 88 (12), 2455-2462.
13. Panahi, M.; Karimi, M.; Skogestad, S.; Hillestad, M.; Svendsen, H. F., Self-Optimizing and Control Structure Design for a CO2 Capture Plant. In 2nd Annual Gas Processing Symposium, 2010.
14. Kvamsdal, H. M.; Jakobsen, J. P.; Hoff, K. A., Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chem Eng Process 2009, 48 (1), 135-144.
15. Luyben, W. L.; Tyreus, B. D.; Luyben, M. L., Plantwide process control. McGraw-Hill: New York, 1998; p xvi, 395 p.
16. Hung, C. T.; Chen, Y. H.; Ward, J. D.; Yu, C. C., Dynamics of processes with recycle: multifeed ternary systems. Ind Eng Chem Res 2006, 45 (25), 8664-8677.
17. Lin, Y. D.; Chen, J. H.; Cheng, J. K.; Huang, H. P.; Yu, C. C., Process alternatives for methyl acetate conversion using reactive distillation. 1. Hydrolysis. Chem Eng Sci 2008, 63 (6), 1668-1682.
18. Wang, S. J.; Wong, D. S. H.; Yu, S. W., Effect of entrainer loss on plant-wide design and control of an isopropanol dehydration process. Ind Eng Chem Res 2008, 47 (17), 6672-6684.
19. Wang, S. J.; Wong, D. S. H., Design and control of entrainer-added reactive distillation for fatty ester production. Ind Eng Chem Res 2006, 45 (26), 9042-9049.
20. Luyben, W. L., Plantwide dynamic simulators in chemical processing and control. Marcel Dekker: New York, 2002; p ix, 429 p.
21. Peng, J. J.; Edgar, T. F.; Eldridge, R. B., Dynamic rate-based and equilibrium models for a packed reactive distillation column. Chem Eng Sci 2003, 58 (12), 2671-2680.
22. Robinson, P. J.; Luyben, W. L., Integrated Gasification Combined Cycle Dynamic Model: H2\S Absorption/Stripping, Water-Gas Shift Reactors, and CO2 Absorption/Stripping. Ind Eng Chem Res 2010, 49 (10), 4766-4781.
23. Cohen, S. M.; Rochelle, G. T.; Webber, M. E., Turning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics. J Energ Resour-Asme 2010, 132 (2), -.
24. Chalmers, H.; Leach, M.; Lucquiaud, M.; Gibbins, J., Valuing flexible operation of power plants with CO2 capture. Enrgy Proced 2009, 1 (1), 4289-4296
25. Chalmers, H.; Gibbins, J., Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance. Fuel 2007, 86 (14), 2109-2123.
26. Chalmers, H.; Lucquiaud, M.; Gibbins, J.; Leach, M., Flexible Operation of Coal Fired Power Plants with Postcombustion Capture of Carbon Dioxide. J Environ Eng-Asce 2009, 135 (6), 449-458.
27. Haines, M. R.; Davison, J. E., Designing Carbon Capture power plants to assist in meeting peak power demand. Enrgy Proced 2009, 1 (1), 1457-1464
28. Solutions, R. a. D. Bituminous Coal and Natural Gas to Electricity; National Energy Technology Laboratory: 2007.
29. Alie, C. F. CO2 Capture With MEA: Integrating the Absorption Process and Steam Cycle of an Existing Coal-Fired Power Plant. University of Waterloo, 2004.
30. Ludwig, E. E., Applied process design for chemical and petrochemical plants. 3rd ed.; Gulf Pub. Co.: Houston, 1995.
31. Desideri, U.; Paolucci, A., Performance modelling of a carbon dioxide removal system for power plants. Energ Convers Manage 1999, 40 (18), 1899-1915.
32. Mimura, T.; Simayoshi, H.; Suda, T.; Iijima, M.; Mituoka, S., Development of energy saving technology for flue gas carbon dioxide recovery in power plant by chemical absorption method and steam system. Energ Convers Manage 1997, 38, S57-S62.
33. Cifre, P. G.; Brechtel, K.; Hoch, S.; Garcia, H.; Asprion, N.; Hasse, H.; Scheffknecht, G., Integration of a chemical process model in a power plant modelling tool for the simulation of an amine based CO2 scrubber. Fuel 2009, 88 (12), 2481-2488.
34. Pfaff, I.; Oexmann, J.; Kather, A., Optimised integration of post-combustion CO2 capture process in greenfield power plants. Energy 2010, 35 (10), 4030-4041.
35. Romeo, L. M.; Bolea, I.; Escosa, J. M., Integration of power plant and amine scrubbing to reduce CO2 capture costs. Appl Therm Eng 2008, 28 (8-9), 1039-1046.
36. Romeo, L. M.; Espatolero, S.; Bolea, I., Designing a supercritical steam cycle to integrate the energy requirements of CO2 amine scrubbing. Int J Greenh Gas Con 2008, 2 (4), 563-570.
37. Lin, Y. J.; Pan, T. H.; Wong, D. S. H.; Jang, S. S.; Chi, Y. W.; Yeh, C. H., Plantwide Control of CO2 Capture by Absorption and Stripping Using Monoethanolamine Solution. Ind Eng Chem Res 2011, 50 (3), 1338-1345.
38. Rochelle, G. T.; Oyenekan, B. A., Alternative stripper configurations for CO2 capture by aqueous amines. Aiche J 2007, 53 (12), 3144-3154.