研究生: |
楊昇曄 Sheng-Ye Yang |
---|---|
論文名稱: |
適用於無線感測平台量化評估之訊號仿真器 Signal Emulator for Quantitative Evaluation of Wireless Sensor Platforms |
指導教授: |
許雅三
Yarsun Hsu 周百祥 Pai H. Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | 量化評估 、訊號仿真器 |
外文關鍵詞: | Quantitative Evaluation, Signal Emulator |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著無線感測網路 (WSN) 的發展,越來越多不同類型的無線感測平台被提出,然而卻沒有相對應量化評估這些感測平台的方法以及指標。感測結果的準確度對於無線感測網路的發展人員來說是一項重要的考量,但現存的無線感測網路解決方案大多是針對無線傳輸能力以及自我組織網路 (Ad hoc networks) 的最佳化,反而較少注意到量測信號的品質以及精準度。
我們相信,要使無線感測網路能夠真正落實到商業以及生活應用層面,並且使得開發人員能夠正確的選擇適合他們應用的無線感測平台,必須要有一套能夠量化評估這些感測平台的方法。在本論文中,我們提出了一種系統層面的量化評估方式以及一些評估的指標。藉由此方法可以直接得到整個系統的表現,而非只能間接參考個別元件的效能資訊。
為了達到量測時輸入信號的可控制性以及可重製性,我們設計了一套信號仿真器 (Signal Emulator),並且撰寫了相對應的軟體以及韌體。量測結果與專業儀器比較顯示此信號仿真器具有一定的準確度,用於感測平台之資料正確性以及取樣時間誤差的評估上,得到與專業儀器相近、具有參考價值的結果。此結果可幫助開發人員評估該無線感測平台是否符合應用需求。
雖然這只是一個初步的構想以及實驗結果,實際上或許有更多不同的方法存在,也還有許多不同的指標可以探討 (例如通訊能力、能源消耗),但是我們相信這是邁向一個系統化、具有參考價值之評價基準的第一步。以此為基礎,希望將來能整合更多不同的硬體,達成更多不同的量測,使得無線感測平台的評估能夠更完整、更有意義。
Many wireless sensor platforms have been built to date, but few metrics or benchmark suite exist for their quantitative evaluation. Sensing accuracy is an important issue for developers of WSN applications. However, many existing solutions for WSN applications are optimized for ad hoc network research while paying little or no attention to the sensing aspect.
We believe that in order for wireless sensor networks to become a commercially successful field, and for WSN developers to choose their right solutions, the sensor platforms must be evaluated by quantifiable metrics. In this thesis a system-level evaluation method and some metrics are proposed. With this approach, users can obtain the system performance rather than resorting to data sheets of components. A signal emulator is designed to address the issue of data controllability and reproducibility. The experiment results compared with gold-reference instruments show that the signal emulator help users obtain reasonable and meaningful evaluation results with the proposed evaluation methodology. This is a first step towards a systematic evaluation for existing sensor platforms. Based on this signal emulator, more functions can be integrated into the evaluation instrument and the evaluation for sensor platforms can be more complete and meaningful.
[1] M. Hempstead, M. Welsh, and D. Brooks. “TinyBench: the case for a standardized benchmark suite for TinyOS based wireless sensor network devices”. In Proc. 29th Annual IEEE International Conference on Local Computer Networks (LCN), pages 585–586, November 2004.
[2] L. Nazhandali, M. Minuth, and T. Austin. “SenseBench: toward an accurate evaluation of sensor network processors”. In Proc. IEEE International Symposium on Workload Characterization, pages 197–203, October 2005.
[3] Y. W. Law, J. Doumen, and P. Hartel. “Survey and benchmark of block ciphers for wireless sensor networks”. ACM Transactions on Sensor Networks (TOSN), 2:65–93, February 2006.
[4] J. P. Lynch, K. J. Loh, T. C. Hou, Y. Wang, J. Yi, C. B. Yun, K. C. Lu, and C. H. Loh. “Validation case studies of wireless monitoring systems in civil structures”. In Proc. 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-2), November 2005.
[5] C. Park, J. Liu, and P. H. Chou. “B#: a battery emulator and power-profiling instrument”. In IEEE Design and Test of Computers, volume 22, pages 150–159, March April 2005.
[6] Pai H. Chou D. Li. “Maximizing efficiency of solar-powered systems by load matching”. In Proc. International Symposium on Low Power Electronics and Design (ISLPED), pages 162–167, August 2004.
[7] C. Park and P. H. Chou. “EmPro: an environment/energy emulation and profiling platform for wireless sensor networks”. In Proc. 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON), volume 1, pages 158–167, September 2006.
[8] Crossbow. “MICA2 868,916 MHz”. http://www.xbow.com/Products/productdetails.aspx?sid=174.
[9] Crossbow. “MICAz 2.4 GHz”. http://www.xbow.com/Products/productdetails.aspx?sid=164.
[10] Crossbow. “TelosB”. http://www.xbow.com/Products/productdetails.aspx?sid=252.
[11] C. Park and P. H. Chou. “Eco: Ultra-wearable and expandable wireless sensor platform”. In Proc. 3rd International Workshop on Body Sensor Networks (BSN), pages 162–165, April 2006.
[12] http://www.ecomote.net/.
[13] Chipcon. “CC1000 single-chip ultra low power RF transceiver for 315/433/868/915 MHz SRD band”. http://focus.ti.com/docs/prod/folders/print/cc1000.html.
[14] Chipcon. “CC2420 single-chip 2.4 GHz IEEE 802.15.4 compliant and ZigBee ready RF transceiver”. http://focus.ti.com/docs/prod/folders/print/cc2420.html.
[15] P. Levis, N. Lee, M. Welsh, and D. Culler. “TOSSIM: accurate and scalable simulation of entire TinyOS applications”. In Proc. 1st International Conference on Embedded Networked Sensor Systems, pages 126–137, November 2003.
[16] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Ostenweil, and T. Schoellhammer. “System for simulation, emulation, and deployment of heterogeneous sensor networks”. In Proc. 2nd International Conference on Embedded Networked Sensor Systems, pages 201–213, November 2004.
[17] G. Werner-Allen, P. Swieskowski, and M. Welsh. “MoteLab: a wireless sensor network testbed”. In Proc. 4th International Symposium on Information Processing in Sensor Networks (IPSN), April 2005.
[18] Texas Instruments. “DAC8830”. http://focus.ti.com/docs/prod/folders/print/dac8830.html.
[19] Texas Instruments. “REF5050”. http://focus.ti.com/docs/prod/folders/print/ref5050.html.
[20] S. C. Huang. “Quantitative evaluation and practical emulation methodologies for wireless sensor platforms”. Master’s thesis, National Tsing Hua University, Taiwan, 2007.
[21] A. Serra. “New measurement procedure for the static test of ADCs”. In Proc. 17th IEEE Instrumentation and Measurement Technology Conference, 2000.
[22] IEEE Std. 1057 – 1994. “Standard for digitizing waveform recorders”, December 1994.
[23] F. Alegria, P. Arpaia, A. M. da Cruz Serra, and P. Daponte. “Performance analysis of an adc histogram test using small triangular waves”. IEEE Transactions On Instrumentation and Measurement, 51(4):723–729, August 2002.
[24] G. Pretzl. “Dynamic testing of high-speed A/D converters”. IEEE Journal of Solid-State Circuits, 13(3):368–371, June 1978.
[25] J. Blair. “Histogram measurement of ADC nonlinearities using sine waves”. IEEE Transactions on Instrument and Measurement, 43(3):373–383, June 1994.
[26] M. Vanden, J. Schoukens, and J. Renneboog. “Dynamic testing and diagnostics of A/D converters”. IEEE Transactions on Circuits and Systems, 33(8):775–785, August 1986.
[27] MAXIM Application Note 2744. “Jitter measurements for CLK generators or synthesizers”, September 2003.
[28] Pai H. Chou and C. Park. “Energy-efficient platform designs for real-world wireless sensing applications”. In Proc. IEEE/ACM International Conference on Computeraided Design, 2005.