研究生: |
黃俊國 Chun-Kuo Huang |
---|---|
論文名稱: |
Bulge test及奈米尺度高分子薄膜之機械性質量測 Bulge test and mechanical properties measurement of nano-structure polymeric thin films |
指導教授: |
蔡哲正
Cho-Jen Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 高分子 、薄膜 、機械性質 |
外文關鍵詞: | bulge test, polymer, thin films, mechanical property |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薄膜元件目前已廣泛的應用於許多領域,為了確保這些元件在長時間使用中不至於發生破壞的情形,這些薄膜材料的機械性質占了舉足輕重的地位。然而,隨著薄膜厚度的減少,較完備且經常被利用來量測材料機械性質的方法皆無法準確的量測出薄膜的性質,除此之外,對於軟性的材料,如高分子薄膜,量測的技術受到更大的挑戰。
Bulge test是一個針對薄膜的機械性質量測工具,它所使用的設備簡易,而且實驗所得到的資訊也相當豐富。受測的懸浮薄膜受到一均勻的壓力而向外鼓起,由所施加的壓力和薄膜鼓起高度的關係,可以得出一條壓力對鼓起高度的曲線,再經由曲線擬合和Vlassak等人所推導的公式,便可以求得薄膜材料的殘餘應力、彈性模數和Poisson ratio。
本論文主要是以bulge test針對奈米壓印過程中所使用的高分子薄膜進行量測,受測材料為Micro Resist Technology所生產的mr-I 8030(以PMMA為基底),薄膜厚度從數十到數百個奈米。同時,我們也利用nanoindentation進行量測,並且將兩種量測技術所得到的結果作一個比較。由nanoindentation所得到的楊氏模數大約比由bulge test所量到的大了20%至50%,這樣的結果可能是由於nanoindentation在量測上會受到基材的效應,同時,在壓痕點下方的材料也會出現緻密化的情形,使結果出現了偏差。
Poisson ratio則是根據biaxial modulus和plane-strain modulus之間的關係所求得。實驗上可藉由正方形懸浮薄膜的bulge test來找出biaxial modulus,由長方形懸浮薄膜的bulge test來找出plane-strain modulus,而得到薄膜材料的Poisson ratio。
In last few decades, the applications of thin film have become more and more widely. In order to guarantee the long-term operation according to their specification, mechanical properties of thin film are highly desirable. Unfortunately, as the scale level of film structure decreasing, it becomes increasingly difficult to measure its mechanical properties.
Bulge test is a useful method for characterize mechanical properties in thin films. In bulge test, a pressure is applied to the backside of the thin film uniformly, making the free-standing thin film to deflect. By measuring the pressure applied and the deflection height of the thin film, a Pressure vs. deflection height curve can be obtained and mechanical properties of the film are determined from the curve fitting process. In bulge test, the accuracy of the measurement is significantly influenced by the sample geometry. The process of free-standing thin film fabrication will be described in this thesis. A big advantage of this test over other micromechanical test lies in the relatively simple stress-strain state in the sample since the stress state in the film is biaxial.
We apply bulge test to measure mechanical properties of polymeric thin film with thickness from several tenth to several hundredth nanometer. In this thesis, the polymeric thin film we tested is mr-I 8030 (Micro Resist Technology) which is used in nanoimprint lithography. The results are compared with data obtain by nanoindentation. The Young’s moduli measured by nanoindentation are about 20% to 50% greater than those measured by bulge test. This result can be viewed as the effect of substrate and the densification of thin film material under indent point.
We also introduce a method to estimate Poisson ratio of thin film material. Poisson ratio, ν, can be calculated from the relationship between biaxial modulus and plane strain modulus. This idea can be carried out by conducting bulge test on square and long rectangular free-standing thin films.
1. M. Ohring, The Materials Science of Thing Films, Academic Press, CA, (1992)
2. H. Huang and F. Spaepen, "Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers". Acta metar. 48, 3261, (2000).
3. R.P. Vinci and J.J. Vlassak, "Mechanical Behavior of Thin Films". Annu. Rev. Mater. Sci. 26, 431, (1996).
4. M.M. deLima, R.G. Lacerda, J. Vilcarromero, and F.C. Marques, "Coefficient of thermal expansion and elastic modulus of thin films". J. Appl. Phys. 86, 4936, (1999).
5. B.M. Davis, D.N. Seidman, A. Moreau, J.B. Ketterson, J. mattson, and M. Grimsditch, "Supermodulus effect'' in Cu/Pd and Cu/Ni superlattices". Phys. Rev. B. 43, 9304, (1991).
6. K.G. Budindky, Surface engineering for wear resistance, Prentice Hall, NJ, (1988)
7. C.D. Mee and E.D. Daniel, Magnetic recording, McGraw-Hill, NY, (1988)
8. K.E. Peterson and C.R. Guarnieri, "Young's modulus measurements of thin films using micromechanics". J. Appl. Phys. 50, 6761, (1979).
9. J. Schweitz, "Mechanical characterization of thin films by micromechanical techniques". MRS Bulletin. 17, 34, (1992).
10. S.P. Baker, M.K. Small, J.J. Vlassak, B.J. Daniels, and W.D. Nix, Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, (1992)
11. W.D. Nix, "Mechanical properties of thin films". Met. Trans. A. 20, 2271, (1989).
12. G.G. Stoney. The tension of metallic films deposited by electrolysis. in Proc. R. Soc. London, Ser. A. 82, 172, (1909).
13. J.A. Floro, E. Chason, and S.R. Lee. Real time mearsurement of epilayer strain using a simplified waver curvature technique. in Mar. Res. Soc. Symp. Proc. 405, 381, (1996).
14. H.E. Inglefield, G. Bochi, C.A. Ballentine, R.C. O'handley, and C.V. Thomson. in Mar. Res. Soc. Symp. Proc. 405, 261, (1996).
15. A.L. Shull, H.G. Zolla, and F. Speapen. Measurement of Young's modulus and Poisson's ratio of free-standing Ag/Cu multilayered thin films. in Mar. Res. Soc. Symp. Proc. 405, 501, (1996).
16. B.M. Clemens, W.D. Nix, and V. Ramaswamy, "Surface-energy-driven intermixing and its effect on the measurement of interface stress". J. Appl. Phys. 87, 2816, (2000).
17. V.T. Gillard and W.D. Nix. in Mar. Res. Soc. Symp. Proc. 356, 283, (1995).
18. A.L. Shull and F. Speapen, "Measurements of stress during vapor deposition of copper and silver thin films and multilayers". J. Appl. Phys. 80, 6243, (1996).
19. C.T. Rosenmayer, F.R. Brotzen, and R.J. Gale. Thin Films: Stresses and Mechanical properties. in Proc. Materials research society. 130, 77, (1989).
20. J. Ruud, D. Josell, A.L. Greer, and F. Spaepen. Thin Films: Stresses and Mechanical propertiesⅢ. in Proc. Materials research society. 239, 239, (1992).
21. H.J. Lee, G. Cornella, and J.C. Bravman, "Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications". Appl. Phys. Lett. 76, 3415, (2000).
22. R.W. Hoffman, Physics of Thin Films. 3. 211, Academic, NY, (1996)
23. J.A. Ruud, D. Josell, F. Spaepen, and A.L. Greer, "A new method for tensile testing of thin films". J. Mat. Res. 8, 112, (1993).
24. D.T. Read and J.W. Dally, "A new method for measuring the strength and ductility of thin films". J. Mat. Res. 8, 1542, (1993).
25. C.J. Sfute, J.B. Cohen, and D.A. Jeannotte. in Mar. Res. Soc. Symp. Proc. 130, 29, (1989).
26. O.S. Leung, A. Munkholm, S. Brennan, and W.D. Nix, "A search for strain gradients in gold thin films on substrates using x-ray diffraction". J Appl. Phys. 88(3), 1389, (2000).
27. G. Cornella, S.H. Lee, W.D. Nix, and J.C. Braveman, "An analysis technique for extraction of thin film stresses from x-ray data". Appl. Phys. Lett. 71(20), 2949, (1997).
28. A. Leiberich and P.K. Roy. Crystallite Dimensions and Strain in Poly-Si and Ti-Silicide Thin Films with Grazing Incidence XRD. in Mar. Res. Soc. Symp. Proc. 239, 87, (1992).
29. C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. Vanlandingham, H.C. Kim, W. Volksen, R.D. Miller, and E.E. Simonyi, "A buckling-based metrology for measuring the elastic moduli of polymeric thin films ". Nature Materials. 3, 545, (2004).
30. J.B. Pethica, R. Hutchings, and W.C. Oliver, "Hardness measurement at penetration depths as small as 20 nm". Phil. Mag. A. 48, 598, (1983).
31. M.F. Doerner, D.S. Gardner, and W.D. Nix, "Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques". J. Mater. Res. 1, 845, (1986).
32. W.C. Oliver and G.M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments". J. Mater. Res. 7, 1564, (1992).
33. H.E. Boyer, ed. Hardness Testing, ASM International. Metals Park, OH, (1987)
34. J.W. Beams, Structure and Properties of Thin Films, John Wiley and Sons, NY, (1959)
35. T. Tsakalakos, "Bulge Test: A Comparison of Theory and Experiment for Isotropic and Anisotropic Films". Thin solid Film. 75, 293, (1981).
36. M.K. Small and W.D. Nix, "Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. " J. Mater. Res. 7, 1553, (1992).
37. J.J. Vlassak and W.D. Nix, "A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films ". J. Mater. Res. 7, 3242, (1992).
38. J.W. Beams. Mechanical properties of thin films of gold and silver. in International conference on structure and properties of thin films. Bolton Lsnding, NY, (1959).
39. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells., McGraw Hill, NY, (1959)
40. H. Hencky, "Uber den spannungszustand in kreisrunden platen mit verschwindender biegunussteifigkeit". Zeitschrift fur mathematik und physic. 63, 311, (1915).
41. J.J. Vlassak, "New experimental techniques and Analysis methods for the study of the mechanical properties of materials in small volumes", Ph.D. dissertation, Stanford University, (1994)
42. S. Levy. in Proc. Symposia Appl. Math. 1, 197, (1949).
43. R.J. Hohlfelder, "Bulge and blister testing of thin films and their interface", Ph.D. dissertation, Stanford University, (1998)
44. P. Lin, "The in-situ measurement of mechanical properties of multilayer coatings", Ph.D. dissertation, Massachusetts Institute of Technology, (1990)
45. J.Y. Pan, P. Lin, and F. Maseeh, Verification of FEM analysis of load-deflection methods for measuring mechanical properties of thin films. IEEE Solid-state sensor and actuator workshop, Hilton Head Island, South Carolina, (1990)
46. M.K. Small, "Use of the bulge test in measuring the mechanical properties of thin films", Ph.D. dissertation, Stanford University, (1992)
47. W.M. Lo, "Use of the bulge test in measuring the mechanical properties change of Pd/Ti/SiNx films induced by hydrogen", Master dissertation, National Tsing Hua University, (2003)
48. B.E.A. Saleh and M.C. Teich, Fundamentals of photonics, John Wiley and Sons, NY, (1991)
49. The image process tool is developed by Y. L. Chen in NCTU.
50. M.G. Allen and S.D. Senturia. Microfabricated structures for the measurement of adhesion and mechanical properties of polymer films. in Proc. ACS Division of Polymeric MS&E. 56, 735, (1987).
51. S. Wolf, Silicon processing for the VLSI era, Lattice Press, CA, (1990)
52. J. Yang and O. Paul, "Fracture properties of silicon nitride thin films from the load-deflection of long membranes". Sensors and Actuators A. 97, 520, (2002).
53. M. Vila, D. Caceres, and C. Prieto, "Mechanical properties of sputtered silicon nitride thin films". J. Appl. Phys. 94, 7868, (2003).
54. M.R. VanLandingham, J.S. Villarrubia, W.F. Guthrie, and G.F. Meyers, "Nanoindentation of polymers: An overview". Macromol. Symp. 167, 15, (2001).
55. S. Yang and Y.W. Zhang, "Analysis of nanoindentatio creep for polymeric materials". J. Appl. Phys. 95, 3655, (2004).
56. C.Y. Zhang, Y.W. Zhang, and K.Y. Zeng, "Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate". J. Mater. Res. 19, 3053, (2004).
57. L.J. Guo. Nanoimprint technology and its applications. in Proc. SPIE Int. Soc. Opt. Eng. 5734, 53, (2004).
58. F. Xu, N.A. Stacey, M. Watts, V. Truskett, I. McMackin, J. Choi, P. Schumaker, E. Thompson, D. Babbs, S.V. Sreenivasan, C.G. Willson, and C.G. Willson. Development of imprint materials for the Step and Flash Imprint Lithography process. in Proc. SPIE Int. Soc. Opt. Eng. 5374, 232, (2004).
59. Q. Xia and S.Y. Chou, "Ultrafast nanoimprint lithography". Proc. SPIE Int. Soc. Opt. Eng. 5725, 180, (2005).
60. G.L.W. Cross, B.S. O'Connell, and J.B. Pethica, "Influence of elastic strains on the mask ratio in glassy polymer nanoimprint". Appl. Phys. Lett. 86, 081902, (2005).
61. S.D. Schuetter, G.A. Dicks, G.F. Nellis, R.L. Engelstad, and E.G. Lovell, "Controlling imprint distortions in step-and-flash imprint lithography". J. Vac. Sci. Technol. B. 22, 3312, (2004).