簡易檢索 / 詳目顯示

研究生: 林立閔
Lin, Li-Min
論文名稱: 基於SSO求解二階規劃Stackelberg-Equilibrium於雲端運算之應用
The Application of Bi-level Programming with Stackelberg Equilibrium in Cloud Computing based on Simplified Swarm Optimization
指導教授: 葉維彰
Yeh, Wei-Chang
口試委員: 葉維彰
Yeh, Wei-Chang
溫于平
Wen, Ue-Pyng
林妙聰
Lin, Miau-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 43
中文關鍵詞: 雲端運算賽局理論Stackelberg 均衡二階規劃
外文關鍵詞: Cloud Computing, Game Theory, Stackelberg Equilibrium, Bi-level programming
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討當雲端服務決策者收到資訊需求時,如何指派資源給後端的作業平台處理,且考量有限的資源下,極小化買方總執行時間和電腦運算時間與成本,極大化賣方利潤與系統可靠度,於雲端運算之資源管理服務上,考量成本付出與資源使用交易之雲端運算經濟議題。研究主要探討不同角色分工中如何分派資源,利用賽局理論概念進行階層式架構建立,導入Stackelberg均勻概念,轉換為二階規劃數學模式,利用本研究所提出之BLSSO演算法(Bi-level Simplified Swarm Optimization)來求解二階線性規劃問題與二階非線性規劃問題。並且將實驗結果與其他啟發式演算法比較,經由測試結果得知,BLSSO演算法具有效率性與品質。


    Cloud computing is a configurable resource model “that can be rapidly provisioned and released with minimal management effort or service provider interaction” (NIST). In cloud computing services, buyers and sellers always have strong (leader) or weak (follower) influence, and leaders have the authority to make decisions. Considering how to only reduce the buyer's cost or increase the seller's profit does not reflect the economic situation in reality; therefore, we propose applying the Stackelberg leadership model to the hierarchical structure in cloud computing. Bi-level programming (BLP) can be used to model non-cooperative decision systems, and we propose combining BLP with a simplified swarm optimization (SSO) technique that we call Bi-level Simplified Swarm Optimization (BLSSO) to solve the decision problem. This algorithm uses a dynamic regional search and guarantees global convergence. Computational results show that the proposed BLSSO technique is very competitive and satisfies a number of criteria, including the number of times the best solution is found, average number of the earliest best solution found, and total computational time.

    中文摘要 i Abstract ii Table of Contents iii List of Figures iv List of Tables v Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Issues 2 1.3 Purpose of Research 2 1.4 Research Framework 3 Chapter 2 Literature Review 5 2.1 Cloud Computing 5 2.1.1 Definition of Cloud Computing 5 2.1.2 Three Delivery Infrastructures 5 2.1.3 Roles in Cloud Computing 7 2.2 Game Theory 8 2.3 Stackelberg Equilibrium 9 2.4 Bi-level Programming 10 2.5 Simplified Swarm Optimization 14 Chapter 3 Research Methods 16 3.1 Model Description 16 3.2 Assumptions 17 3.3 Notation 17 3.4 Model Construction 18 Chapter 4 Methodology 19 4.1 Solution Procedure 19 4.2 Bi-level Simplified Swarm Optimization (BLSSO) 21 Chapter 5 Data Analysis and Results 26 Chapter 6 Conclusions and Recommendations 40 References 41

    [1]. Ashraf Bany Mohammed, “Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud”, Economic Models and Algorithms for Distributed Systems, 2010, pp.187-208.
    [2]. Binmore, A. Rubinstein, and A. Wolinsky , “The Nash Bargaining Solution in
    Economic Modeling”, Rand Journal of Economics, Vol.17, 1986, pp.176~179.
    [3]. Bard J.F., Moore J.T., “A branch and bound algorithm for the bilevel programming problem”, SIAM Journal of Scientific and Statistical Computing, Vol.11, 1990, pp.281-292.
    [4]. Baoding Liu, “Stackelberg-Nash Equilibrium for Multilevel Programming with Multiple Followers Using Genetic Algorithms”, Computers and Mathematics with Applications, Vol.36, No.7, 1998, pp.79-89.
    [5]. Bard J.F., “Practical Bilevel Optimization: Algorithms and Applications”, Kluwer Academic Publishers, Boston, 1998.
    [6]. Benoit Colson, Patrice Marcotte, Gilles Savard, “Bilevel programming: A survey”, Journal of Operational Research, Vol.3, 2005, pp.87-107.
    [7]. Brodkin, J., 2008. Gartner: Seven cloud-computing security risks,
    http://www.networkworld.com/news/2008/070208-cloud.html
    [8]. Cloud Computing Use Cases Whitepaper, Version 4.0, 2011,
    http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
    [9]. E.S. Lee and H.S. Shih, “Fuzzy and Multi-Level Decision Making: An Interactive Computational Approach”, Springer-Verlag, London, 2001.
    [10]. Guo-Fu Zhang, “Solutions of Nonlinear Multilevel Programming Based on Particle Swarm Optimization” , Pattern Recognition and Artificial Intelligence, Vo1.20,No6,2007.
    [11]. Geroge Pallis, “Cloud Computing: The New Frontier of Internet Computing”, IEEE Internet Computing, vol.10, no.14, 2010, pp.70.
    [12]. Hsu-Shih Shih, “A Neural Network Approach to Multiobjective and Multilevel Programming Problems”, Computers and Mathematics with Applications, Vol.48, 2004, pp.95-108.
    [13]. Herminia I. Calvete, Carmen Gale, Pedro M. Mateo, “A New Approach for Solving Linear Bilevel Problems Using Genetic Algorithms”, European Journal of Operational Research, Vol.188, issue 1, 2008, pp.14-28.
    [14]. Her-Shing Wang, Wei-Chang Yeh, Pei-Chiao Huang, Wei-Wen Chang, “Using Association Rules and Particle Swarm Optimization Approach for Part Change”, Expert Systems with Applications, Vol.36, No.4, 2009, pp.8178-8184.
    [15]. Jun Yang, Min Zhang, Bo He, Chao Yang, “Bi-level Programming Model and Hybrid Genetic Algorithm for Flow Interception Problem with Customer Choice”, Computers and Mathematics with Applications, 2007, Vol.57, pp.1985-1994.
    [16]. K.M. Lan, U.P. Wen, H.S. Shih, E.S. Lee, “A hybrid neural network approach to bilevel programming problems”, Applied Mathematics Letters, 2007, Vol.20, pp.880-884.
    [17]. Omar Ben-Ayed, Charles E. Blair, “Computational Difficulties of bi-level Linear Programming”, Operations Research, Vol.38, No.3, 1990, pp.556-560.
    [18]. R.J. Kuo, C.J. Huang, “Application of Particle Swarm Optimization Algorithm for Solving Bi-level Linear Programming Problem”, Computers and Mathematics with Applications, Vol.58, 2009, pp.678–685.
    [19]. R.H. Jan, M.S. Chern, “Nonlinear Integer Bilevel Programming”, European Journal of Operational Research, Vol.72, No.3, 1994, pp.574-587.
    [20]. R.J. Kuo, Y.S. Han, “A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Solving Bi-level Linear Programming Problem – A Case Study on Supply Chain Model”, Applied Mathematical Modelling, Vol.35, 2011, pp.3905–3917.
    [21]. Savard G., Gauvin J., “The Steepest Descent Direction for Nonlinear Bilevel Programming Problem”, Operations Research Letters, Vol.15, No.5, 1994, pp.265-272.
    [22]. U.P. Wen, S.T. Hsu, “Linear Bi-level Programming Problems – A Review”, Journal of the Operational Research Society, Vol.42, No.2, 1991, pp.25–133.
    [23]. U.P. Wen, A.D. Huang, “A simple tabu search method to solve the mixed-integer linear bi-level programming problem”, European Journal of Operational Research, Vol.88, No.3, 1996, pp.563–571.
    [24]. Wei-Chang Yeh, “A Two-Stage Discrete Particle Swarm Optimization for the Problem of Multiple Multi-Level Redundancy Allocation in Series Systems”, Expert Systems with Applications, Vol.36, No.5, 2009, pp.9192-9200.
    [25]. Wei-Chang Yeh, Wei-Wen Chang, and Yuk Ying Chung, “A new hybrid approach for mining breast cancer pattern using Discrete Particle Swarm Optimization and Statistical method”, Expert Systems with Application, Vol.36, No.4, 2009, pp.8204-8211.
    [26]. Yang, “Bi-level Programming Problems: Review on Development of the Bi-level Programming”, 1993, pp.23-36.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE