簡易檢索 / 詳目顯示

研究生: 林晏平
Lin, Yen-Ping
論文名稱: 磁力式觸覺感測器最佳設計於物件抓取力量感測之應用
Design of Magnetic Tactile Sensor — Normal and Shear Force Sensing of Object Grasping
指導教授: 張禎元
Chang, Jen-Yuan
口試委員: 馮國華
Feng, Guo-Hua
曹哲之
Tsao, Che-Chih
張賢廷
Chang, Hsien Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 108
中文關鍵詞: 觸覺感知機器人感知磁力式力量感測器拓樸優化
外文關鍵詞: Tactile sensing, Magnetic tactile sensor, Robot sensing, Topology optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 社會進步推動工業自動化和機器人技術變得更關鍵,機械人需更具智慧以應變環境。現代機器人應用場景趨於複雜且充滿不確定性,因此開發感知能力的機械人變得迫切,使其更智慧地與外界互動。

    本研究致力於開發磁力式觸覺感測器系統,提供機械設備與外界互動的關鍵資訊。研究包含磁力式觸覺感測器的設計、製作、校正、驗證與系統整合到各種機械端效器上,使機械夾爪能夠透過觸覺感知未知環境的互動訊息。針對文獻中磁力式觸覺感測器不足的部分進行設計,包括感測器的靈敏度提升、感測器構形比較、彈性體拓樸形狀比較、不同磁極耦合的排列設計與比較,進而提升感測器的性能。

    本研究利用COMSOL以有限單元方法探討結構優化,著重關注磁鐵和矽膠的優化目標和方法,研究不同的幾何結構、感測器和磁鐵的擺放數量和位置對感測器靈敏度的影響。最終提出了最佳的設計方案,以最大化感測器受力的靈敏度。實做中使用Arduino讀取感測器資料,並將資料實時傳送到PC端處理,並作為操作機械夾爪時的回饋,成功使夾爪能輕巧地夾取物品。


    Human societal progress drives the increasing significance of industrial automation and robotics. Advancements in sensor, actuator, and controller technologies expand across fields, demanding smarter mechanical devices to adapt to changing environments. Sensors have become pivotal in machine interaction, enhancing their intelligence. Yet, modern robotic environments are complex and uncertain, necessitating robots with perceptual abilities to intelligently engage with the external world, much like humans handle unforeseen events.

    This research focuses on developing a magnetic tactile sensing system crucial for mechanical devices interacting with the environment. It involves designing, fabricating, validating, calibrating, and integrating these sensors into different mechanical end effectors. By addressing existing literature gaps, it includes modifying sensor designs, comparing performance across various configurations, elastic body shapes, magnetic pole arrangements, and conducting functional verifications to enhance sensor capabilities. This integration enables mechanical arms to perceive and interact with unknown environments through tactile sensing.

    Utilizing finite element method by COMSOL, this study explores structural optimization, emphasizing the optimization objectives and methods for magnets and silicone. It investigates the impact of various geometric structures, sensor placements, and quantities of sensors and magnets on sensor sensitivity. Ultimately, the research proposes optimal design schemes to maximize the sensitivity of sensors to external forces. In practice, Arduino is employed to read sensor data, which is then transmitted in real-time to a PC for processing, providing feedback during the operation of a mechanical gripper. This successful implementation enables the gripper to delicately grasp objects with ease.

    摘要 i Abstract iii 致謝 v 目錄 vii 圖目錄 xi 表目錄 xv 符號列表 xvii 第一章緒論 1 1.1 本章綜述 1 1.2 研究動機 2 1.2.1 感測器之於剛性夾爪 2 1.2.2 感測器之於系統 4 1.3 文獻回顧 5 1.3.1 觸覺感知的重要性 5 1.3.2 物理量測方式 6 1.3.2.1 壓力式 7 1.3.2.2 光學式 9 1.3.2.3 流道式 11 1.3.2.4 電磁感應式 12 1.3.2.5 觸覺感測器比較與選擇 15 1.3.3 接觸介質 16 1.3.4 幾何結構 19 1.4 研究問題與目標 21 1.5 研究方法 22 第二章理論背景 25 2.1 本章綜述 25 2.2 感測器原理 25 2.3 任一空間磁場推導 29 2.4 力量位移轉換 36 2.5 物理模型 36 2.6 Halbach 陣列 39 2.6.1 理想Halbach 形成單邊磁場 39 2.6.2 應用與實踐 43 2.6.3 本章總結 44 第三章感測器設計與模擬 45 3.1 本章綜述 45 3.2 感測器規格與電路 46 3.3 矽膠結構設計 47 3.3.1 矽膠與參數設定 49 3.3.1.1 矽膠選定 49 3.3.1.2 參數設定 50 3.3.2 拓樸結構優化方法與流程 53 3.3.2.1 變密度方法優化原理 55 3.3.2.2 目標函數設定 57 3.3.3 拓樸優化算法OC vs MMA 58 3.3.4 對單一感測對拓樸優化 60 3.3.5 結構最軟化之拓樸優化 65 3.4 磁鐵排列設計 68 3.4.1 排列外型選擇 69 3.4.2 Halbach Array 磁極之參數比較 76 3.5 立體矽膠結構設計 82 3.6 本章總結 85 第四章感測器試驗與分析 87 4.1 本章綜述 87 4.2 感測器製造 87 4.2.1 矽膠灌製 87 4.2.2 感測器組合 88 4.3 矽膠實驗 89 4.4 Halbach array 實驗 89 4.5 感測器實驗 91 4.5.1 按壓實驗平台架設 91 4.5.2 實驗數據分析 92 4.6 觸覺感測器應用於機械夾爪 96 4.7 本章總結 98 第五章結論與未來展望 99 5.1 總結 99 5.2 研究貢獻 100 5.3 未來展望 102 參考文獻 103 附錄A — 預設應力值設定 107

    [1] S. Captain, Why It’s So Hard For Robots To Get A Grip, Accessed: 2022-11-30, Jan. 2017. [Online]. Available: https://www.fastcompany.com/3066863/whyits-so-hard-for-robots-to-get-a-grip.
    [2] Universal Robots, Robot Gripper Showdown: Air Gripper vs. Electric Gripper, Accessed:2023-09-03, Oct. 2020. [Online]. Available: https://www.universalrobots.com/blog/robot-gripper-showdown-air-gripper-vs-electricgripper/.
    [3] M. V. R. S. Dahiya G. Metta and G. Sandini, “Tactile Sensing—From Humans to Humanoids,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20, 2010.
    [4] P. J. Parikh, J. M. Fine, and M. Santello, “Dexterous Object Manipulation Requires Context-Dependent Sensorimotor Cortical Interactions in Humans,” Cerebral Cortex, vol. 30, no. 5, pp. 3087–3101, Dec. 2019, ISSN: 1047-3211.
    [5] S. J. Redmond, M. I. Tiwana, and N. H. Lovell, “A review of tactile sensing technologies with applications in biomedical engineering,” Sensors and Actuators A: Physical, vol. 179, pp. 700–708, 2012.
    [6] H. Choi, K. Seo, S. Hyung, Y. Shim, and S.-C. Lim, “Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System,” Sensors, vol. 18, no. 2, p. 566, 2018.
    [7] Tokyo Measuring Instruments Laboratory, What is STRAIN, Accessed: 2022-11-30. [Online]. Available: https://tml.jp/e/knowledge/strain%5C_gauge/about.html.
    [8] Y. Tan, K. Yang, B. Wang, H. Li, L. Wang, and C. Wang, “High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application,” Nano Research, vol. 14, no. 11, pp. 3969–3976, 2021.
    [9] Quadratec Limited, OptoForce Force Sensing Systems, Accessed: 2022-11-30. [Online]. Available: http://www.quadratec- ltd.co.uk/optoforce- forcesensing-systems.asp.
    [10] Yuan, Wenzhen, Dong, Siyuan, Adelson, and E. H., “GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force,” Sensors, vol. 17, no. 12, 2017, ISSN: 1424-8220.
    [11] N. Wettels, J. A. Fishel, and G. E. Loeb, “Multimodal tactile sensor,” in The Human Hand as an Inspiration for Robot Hand Development, Springer, 2014, pp. 405–429.
    [12] J. C. Yeo, Kenry, J. Yu, K. P. Loh, Z. Wang, and C. T. Lim, “Triple-State Liquid-Based Microfluidic Tactile Sensor with High Flexibility, Durability, and Sensitivity,” ACS Sensors, vol. 1, no. 5, pp. 543–551, 2016, ISSN: 2379-3694.
    [13] A. Pagoli, F. Chapelle, J.-A. Corrales-Ramon, Y. Mezouar, and Y. Lapusta, “Large-Area and Low-Cost Force/Tactile Capacitive Sensor for Soft Robotic Applications,” Sensors, vol. 22, no. 11, p. 4083, 2022, ISSN: 1424-8220.
    [14] H. Wang, G. De Boer, J. Kow, et al., “Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors,” Sensors, vol. 16, no. 9, p. 1356, 2016, ISSN:1424-8220.
    [15] H. Wang, D. Jones, G. de Boer, et al., “Design and characterization of tri-axis soft inductive tactile sensors,” IEEE Sensors Journal, vol. 18, no. 19, pp. 7793–7801, 2018.
    [16] SCHUNK, Co-act EGP-C Collaborating gripper for small components, [Accessed:2023-11-24]. [Online]. Available:https://schunk.com/us/en/grippingsystems/parallel-gripper/co-act-egp-c/c/PGR_3995.
    [17] Robotiq, 2F-85 and 2F-140 Grippers - Robotiq, Accessed 2023-11-24. [Online]. Available: https://robotiq.com/products/2f85-140-adaptive-robotgripper.
    [18] OnRobot, RG2 Gripper - Flexible 2 Finger Robot Gripper, Accessed 2023-11-24. [Online]. Available: https://onrobot.com/en/products/rg2-gripper.
    [19] T. P. Tomo, M. Regoli, A. Schmitz, et al., “A New Silicone Structure for uSkin—A Soft, Distributed, Digital 3-Axis Skin Sensor and Its Integration on the Humanoid Robot iCub,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2584–2591, 2018.
    [20] W. Zheng, B. Wang, H. Liu, X. Wang, Y. Li, and C. Zhang, “Bio-Inspired Magnetostrictive Tactile Sensor for Surface Material Recognition,” IEEE Transactions on Magnetics, vol. 55, no. 7, pp. 1–7, 2019.
    [21] S. Oh, Y. Jung, S. Kim, S. Kim, X. Hu, and e. a. H. Lim, “Remote tactile sensing system integrated with magnetic synapse,” Scientific Reports, vol. 17, 1 2017.
    [22] R. Hsu, “磁力式觸覺感測器系統開發,” Master Thesis, National Tsing-Hua University, 2021.
    [23] C. Becker, B. Bao, D. D. Karnaushenko, et al., “A new dimension for magnetosensitive e-skins: Active matrix integrated micro-origami sensor arrays,” Nature Communications, vol. 13, no. 1, 2022, ISSN: 2041-1723.
    [24] H. J. Ahn and K. R. Kim, “2D hall sensor array for measuring the position of a magnet matrix,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 1, no. 2, pp. 125–129, 2014, ISSN: 2198-0810.
    [25] F. Tang, J. Yang, H.-N. Li, et al., “Field Validation of a Magnetic Sensor to Monitor Borehole Deviation during Tunnel Excavation,” Materials, vol. 11, no. 9, p. 1511, 2018, ISSN: 1996-1944.
    [26] S. Youssefian, N. Rahbar, and E. Torres-Jara, “Contact Behavior of Soft Spherical Tactile Sensors,” IEEE Sensors Journal, vol. 14, no. 5, pp. 1435–1442, 2014.
    [27] J. A. Brydson, Plastics materials, 7th. Oxford: Butterworth-Heinemann, 1999, ISBN: 9780750641326.
    [28] Y.-H. Lin, “Polymer chain dynamics,” in Polymer Viscoelasticity, 2nd. WORLD SCIENTIFIC, 2010, ch. 3, pp. 26–50, ISBN: 978-981-4464-73-4.
    [29] J. Masi, “Overview of Halbach magnets and their applications,” Electrical Manufacturing and Coil Winding Expo 2010-2013, pp. 134–139, 2013.
    [30] P. L. N. Hernandez, W.-T. Franke, and R. Maheshwari, “Review of axial and radial flux PM machines with emphasis in high power density,” in 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 2022, pp. 1–8.
    [31] H. Raich and P. Blümler, “Design and construction of a dipolar halbach array with a homogeneous field from identical bar magnets: Nmr mandhalas,” Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, vol. 23B, no. 1, pp. 16–25, 2004, ISSN: 1552-5031.
    [32] H. Soltner and P. Blümler, “Dipolar Halbach magnet stacks made from identically shaped permanent magnets for magnetic resonance,” Concepts in Magnetic Resonance Part A, vol. 36A, no. 4, pp. 211–222, 2010, ISSN: 1546-6086.
    [33] Melexis, MLX90393 Triaxis® Magnetic Node, Accessed: 2021-10-20. [Online]. Available: https : / / www . melexis . com / en / documents / documentation /datasheets/datasheet-mlx90393.
    [34] A. Tilley, H. Dreyfuss, and H. D. Associates, The Measure of Man and Woman: Human Factors in Design. Whitney Library of Design, 1993, ISBN: 9780823030316.
    [35] A. Chanda, “Biomechanical Modeling of Human Skin Tissue Surrogates,” Biomimetics (Basel), vol. 3, no. 3, 2018.
    [36] A. Abdouni, R. Vargiolu, and H. Zahouani, “Impact of finger biophysical properties on touch gestures and tactile perception: Aging and gender effects,” Scientific Reports, vol. 8, no. 1, p. 12 605, 2018, ISSN: 2045-2322.
    [37] AZoNetwork, Silicone Rubber, Accessed: 2022-12-08. [Online]. Available: https://www.azom.com/properties.aspx?ArticleID=920.
    [38] MatWeb, Overview of materials for Silicone Rubber, Accessed: 2022-12-08. [Online]. Available: https : / / www . matweb . com / search / datasheet . aspx ?MatGUID=cbe7a469897a47eda563816c86a73520%5C&ckck=1.
    [39] Totally Seals, What is ’Shore’ hardness? Accessed: 2022-12-05, May 2019. [Online]. Available: https://www.totallyseals.com/blogs/news/what- isshore-hardness (visited on 05/09/2018).
    [40] D. T. McGrosky, Physical Properties of Rubber, Accessed: 2022-12-04, Aug. 2018. [Online]. Available: https : / / satoriseal . com / physical - properties -rubber (visited on 08/30/2018).
    [41] O. S. Martin P. Bendsøe, Topology Optimization Theory, Methods, and Applications, 2nd ed. Berlin, Heidelberg: Springer, 2004, ISBN: 978-3-662-05086-6.
    [42] D. Farias and G. Begnini, “TOPOLOGY AND LATTICE OPTIMIZATION: DESIGN OF WING-FUSELAGE ATTACHMENT COMPONENT FOR AN AERODESIGN AIRCRAFT,” CREEM2020, Jan. 2020.
    [43] M.-J. Gui, X.-H. Zhou, X.-L. Xie, et al., “Design and Experiments of a Novel Halbach-Cylinder-Based Magnetic Skin: A Preliminary Study,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11, 2022, ISSN: 0018-9456.
    [44] S.-S. Choi, S.-H. Cha, and C. C. Tappert, “A Survey of Binary Similarity and Distance Measures,” Journal on Systemics, Cybernetics and Informatics, vol. 8, pp. 43–48, 2010.
    [45] B. Zhang, B. Wang, Y. Li, and S. Jin, “Magnetostrictive tactile sensor of detecting friction and normal force for object recognition,” International Journal of Advanced Robotic Systems, vol. 17, no. 4, 2020, ISSN: 1729-8806.
    [46] Y. Kim, H. Yuk, R. Zhao, S. A. Chester, and X. Zhao, “Printing ferromagnetic domains for untethered fast-transforming soft materials,” Nature, vol. 558, no. 7709, pp. 274–279, 2018, ISSN: 0028-0836.
    [47] R. Borayek, F. Foroughi, X. Xin, et al., “Near-zero hysteresis ionic conductive elastomers with long-term stability for sensing applications,” ACS Applied Materials Interfaces, vol. 14, no. 9, pp. 11 727–11 738, 2022, ISSN: 1944-8244.
    [48] Y.-P. Lin, K.-Y. Peng, and J.-Y. Chang, “Increasing sensitivity of magnetic tactile sensors by optimizing arrangement of pm array,” in 2023 IEEE SENSORS, 2023, pp. 1–4, ISBN: 2168-9229.
    [49] L. Xia, L. Zhang, Q. Xia, and T. Shi, “Stress-based topology optimization using bi-directional evolutionary structural optimization method,” Computer Methods in Applied Mechanics and Engineering, vol. 333, pp. 356–370, 2018, ISSN: 0045-7825.
    [50] P. Duysinx and O. Sigmund, “New developments in handling stress constraints in optimal material distribution,” in 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, 1998.

    QR CODE