研究生: |
林奇文 Lin, Chi-Wen |
---|---|
論文名稱: |
果蠅原位腦自動取像術於神經網路體之建構 Automated in situ Brain Imaging for Mapping the Drosophila Connectome |
指導教授: |
江安世
Chiang, Ann-Shyn |
口試委員: |
施奇廷
羅中泉 吳嘉霖 林彥穎 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 自動化 、神經網路體 、果蠅 、頭陣列 、原位腦取像 |
外文關鍵詞: | automated, connectome, Drosophila, head array, in situ brain imaging |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經網路體(connectome)是指全腦神經細胞間線路連接的總合,由於神經細胞數量龐大、形態各異且交錯縱橫,若要清楚描繪所有神經細胞間連接的情形,必須先取得大量單一神經細胞的影像。以果蠅為例:單一神經細胞影像係擷取自不同的腦,需要經過影像對位才能全部重組在同一個標準腦空間中,故這項工作極為繁重。此外,為了分析資訊如何在大腦內處理與流動,也必須將神經功能性數據如活體神經影像整合進來,這又是另一項挑戰;因為功能性影像也是從不同次實驗收集而來,同樣需要經過影象對位才能與單一神經細胞的結構性影像整合在一起。
果蠅腦的結構性影像傳統上是以解剖腦來獲取,但功能性影像則擷取自原位腦。由於解剖腦週邊的脂肪等結締組織已被去除,容易因機械拉扯、膨脹及重力而扭曲變形,但原位腦則無以上情形,所以要將這兩種影像做到準確對位有其困難。因此本研究發展出一種原位腦取像技術,稱為果蠅頭陣列切片取像術(簡稱FHAST),讓結構性及功能性神經影像都能透過原位腦來擷取,以方便後續的對位與整合。FHAST技術是將果蠅頭整齊排成陣列並以洋菜膠包裹,然後用震動式切片機同時將所有果蠅頭切開,使大腦暴露出來,以進行染色和取像。FHAST保留了原位神經結構包括腦與週邊神經的連接,並且減少了神經形態的扭曲。更重要的是:FHAST切片讓我們可以在共軛焦顯微鏡上進行自動化3D取像,一次最多可設定100個果蠅腦,這極有利於神經網路體的建構。
我們運用FHAST技術所獲取的影像初步建立了一個果蠅頭參考模型,發現不論單一神經細胞影像或功能性影像均能準確對進這個參考模型中,藉此我們得以預測可能是那些神經細胞產生該功能性影像及其相關的特定行為。我們希望FHAST將來可以成為一個標準技術平台,讓不同實驗室所獲的神經影像得以整合成一個共享資料庫,進而加速影像的累積與神經網路的解析。
Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.
1.Bohland JW, et al. (2009) A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput Biol 5(3), e1000334.
2.Mitra PP, Rosa MG, Karten HJ (2013) Panoptic neuroanatomy: digital microscopy of whole brains and brain-wide circuit mapping. Brain Behav Evol 81(4):203-205.
3.Alivisatos AP, et al. (2012) The brain activity map project and the challenge of functional connectomics. Neuron 74(6):970-974.
4.Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4), e42.
5.Behrens TE, Sporns O (2012) Human connectomics. Curr Opin Neurobiol 22(1):144- 153.
6.Craddock RC, et al. Imaging human connectomes at the macroscale. (2013) Nat Methods 10(6):524-539.
7.Samuel A, Levine H, Blagoev KB (2013) Scientific priorities for the BRAIN Initiative. Nat Methods 10(8):713-714.
8.Markram H (2012) The Human Brain Project. Sci Am 306(6):50-55.
9.Chiang AS, et al. (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21(1):1-11.
10.Lin HH, Lai JS, Chin AL, Chen YC, Chiang AS (2007) A map of olfactory representation in the Drosophila mushroom body. Cell 128(6):1205-1217.
11.Jefferis GS, et al. (2007) Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128(6):1187-1203.
12.White JG, Southgate E, Thomson JN, Brenner S. (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1-340.
13.Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7(2), e1001066.
14.Jarrell TA, et al. (2012) The connectome of a decision-making neural network. Science 337(6093):437-444.
15.Bock DD, et al. (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471(7337):177-182.
16.Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction- selectivity circuit of the retina. Nature 471(7337):183-188.
17.Cardona A, et al. (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 8(10), e1000502.
18.Takemura SY, et al. (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500(7461):175-181.
19.Briggman KL, Bock DD (2012) Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22(1):154-161.
20.Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2(11), e329.
21.Osten P, Margrie TW (2013) Mapping brain circuitry with a light microscope. Nat Methods 10(6):515-523.
22.Helmstaedter M, Mitra PP (2012) Computational methods and challenges for large-scale circuit mapping. Curr Opin Neurobiol 22(1):162-169.
23.Helmstaedter M, Briggman KL, Denk W (2008) 3D structural imaging of the brain with photons and electrons. Curr Opin Neurobiol 18(6):633-641.
24.Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72(2):202-230.
25.Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22(3):451-461.
26.Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9(5):703-709.
27.Livet J, et al. (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56-62.
28.Cai D, Cohen KB, Luo T, Lichtman JW Sanes JR (2013) Improved tools for the Brainbow toolbox. Nat Methods 10(6): 540-547.
29.Hampel S, et al. (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8(3):253-259.
30.Hadjieconomou D, et al. (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8(3):260-266.
31.Feinberg EH, et al. (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57(3):353-363.
32.Kim J, et al. (2012) mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat Methods 9(1):96-102.
33.Ragan T, et al. (2012) Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9(3):255-258.
34.Gong H, et al. (2013) Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. NeuroImage 74:87-98.
35.Chung K, et al. (2013) Structural and molecular interrogation of intact biological systems. Nature 497(7449):332-337.
36.Hama H, et al. (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14(11):1481-1488.
37.Dodt HU, et al. (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4(4):331-336.
38.Niedworok CJ, et al. (2012) Charting monosynaptic connectivity maps by two-color light-sheet fluorescence microscopy. Cell Rep 2(5):1375-1386.
39.Peng H, et al. (2011) BrainAligner: 3D registration atlases of Drosophila brains. Nat Methods 8(6):493-498.
40.Liu YC, Chiang AS (2003) High-resolution confocal imaging and three-dimensional rendering. Methods 30(1):86-93.
41.Lu J. (2011) Neuronal tracing for connectomic studies. Neuroinformatics 9(2-3):159- 166.
42.Schmitz SK, et al. (2011) Automated analysis of neuronal morphology, synapse number and synaptic recruitment. J Neurosci Methods 195(2):185-193.
43.Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11(7):514-522.
44.Miyazaki T, Ito K (2010) Neural architecture of the primary gustatory center of Drosophila melanogaster visualized with GAL4 and LexA enhancer-trap systems. J Comp Neurol 518(20):4147-4181.
45.Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61(3): 373-384.
46.Yu JY, Kanai MI, Demir E, Jefferis GS, Dickson BJ (2010) Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr Biol 20(18):1602-1614.
47.Shinomiya K, Matsuda K, Oishi T, Otsuna H, Ito K. (2011) Flybrain Neuron Database: a comprehensive database system of the Drosophila brain neurons. J Comp Neurol 519(5):807-833.
48.Shih CT, et al. (2015) Connectomics-based analysis of information flow in the Drosophila brain. Curr Biol 25(10):1249-1258.
49.Wu JS, Luo L (2006) A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc 1(4):2110-2115.
50.Lam SC, et al. (2010) Segmentation of center brains and optic lobes in 3D confocal images of adult fruit fly brains. Methods 50(2):63-69.
51.Riemensperger T, Pech U, Dipt S, Fiala A (2012) Optical calcium imaging in the nervous system of Drosophila melanogaster. Biochim Biophys Acta 1820(8):1169-1178.
52.Yoo SM, Choi JH, Lee SY, Yoo NC (2009) Applications of DNA microarray in disease diagnostics. J Microbiol Biotechnol 19(7):635–646.
53.Uzoma I, Zhu H (2013) Interactome mapping: using protein microarray technology to reconstruct diverse protein networks. Genomics Proteomics Bioinformatics 11(1):18-28.
54.Kononen J, et al. (1998) Tissue microarrays for high throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847.
55.Radhakrishnan R, Solomon M, Satyamoorthy K, Martin LE, Lingen MW (2008) Tissue microarray – a high-throughput molecular analysis in head and neck cancer. J Oral Pathol Med 37(3):166–176.
56.Heisenberg M, Böhl K (1979) Isolation of anatomical brain mutants of Drosophila by histological means. Z Naturforsch C 34:143-147.
57.Jäger RF, Fischbach KF (1987) Some improvements of the Heisenberg- Böhl method for mass histology of Drosophila heads. Dros Inf Serv 66:162-165.
58.Fischbach KF, Technau G (1984) Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster. Dev Biol 104(1):219-239.
59.Strausfeld NJ, Sinakevitch I, Vilinsky I (2003) The Mushroom bodies of Drosophila melanogaster: An immunocytological and Golgi study of Kenyon cell organization in the calyces and lobes. Microsc Res Techniq 62(2):151-169.
60.McCall B, Tkaczyk TS (2010) Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling. Opt Eng 49(10):103401.
61.Yu JY, Holland DB, Blake GA, Guo CL (2013) The wide-field optical sectioning of microlens array and structured illumination-based plane-projection multiphoton microscopy. Opt Express 21(2):2097-2109.
62.Cardona A, et al. (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7(6), e38011.
63.Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175.
64.Dani A, Huang B (2010) New resolving power for light microscopy: applications to neurobiology. Curr Opin Neurobiol 20(5):648-652.
65.Dani A, Huang B, Bergan J, Dulac C, Zhuang X (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68(5):843-856.
66.Ji N, Shroff H, Zhong H, Betzig E (2008) Advances in the speed and resolution of light microscopy. Curr Opin Neurobiol 18(6):605-616.
67.Jenett A, et al. (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2(4):991-1001.
68.Bohm RA, et al. (2010) A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci USA 107(37):16378-16383.
69.Tsai PS, et al. (2003) All-optical histology using ultrashort laser pulses. Neuron 39(1):27-41.
70.Orringer DA, Golby A, Jolesz F (2012) Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices 9(5):491-500.
71.Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55(1):25-36.
72.Micheva KD, Busse B, Weiler NC, O'Rourke N, Smith SJ (2010) Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68(4):639-653.