簡易檢索 / 詳目顯示

研究生: 王映翔
Wang, Ying-Shiang
論文名稱: 光電化學太陽電池半導體量子點光電性質與陽極連結性之研究
Photonic Properties of Semiconductor Quantum Dots and Their Connectivity to The Anode of Photo-electrochemical Solar Cells
指導教授: 洪哲文
Hong, Che-Wun
口試委員: 謝曉星
吳宗信
蔡明剛
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 太陽電池量子點第一原理PbS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電化學太陽電池為新一代的太陽電池,具有可撓、製造簡單、成本便宜等優勢,但如使用釕錯合物染料,不僅價格昂貴、技術受制於人,且因只吸收特定波長範圍太陽光,使得整體效率以及製作成本仍無法取代現今矽太陽電池。本論文希望藉由半導體量子點取代染料敏化太陽電池中釕錯合物染料,並提升其光電性能。半導體量子點合成上比釕錯合物便宜許多以外,量子點具有量子侷限效應,隨著調整粒徑大小,吸收之能隙寬(energy gap)也隨之改變,所以可以藉此特性製造高效率之量子點敏化太陽電池(quantum dot sensitized solar cells, QDSSC)取代傳統染料敏化太陽電池。
    本研究方式是使用時間獨立(time independent)與時間相依(time dependent)的密度泛函理論(density functional theory, DFT),搭配B3LYP(Becke, three-parameter, Lee-Yang-Parr)交換相關泛函。由於PbS塊材的能隙寬約為0.37eV,所以當PbS量子點發生量子侷限效應時,能隙寬剛好會從紅外光涵蓋到可見光。所以首先建立不同尺寸的PbS量子點,接著計算PbS量子點的各種光學性質,如能隙寬、電子軌道、態密度分布(density of states, DOS)、吸收光譜等。另外,利用Marcus Theory去計算電子傳輸速率,評比量子點較好的電子傳輸速率優勢。接著分析PbS原子團在三氯甲烷中的溶劑效應,然後討論PbS原子團在TiO2表面吸附情形,以及利用分子軌域圖,觀察光電激發後電子傳遞情形,從PbS量子點往TiO2傳遞路徑。
    最後,我們拿實驗值和模擬值做比較,証明兩者數值皆符合量子侷限效應,表示藉由控制PbS量子點的粒徑,即可增加PbS量子點吸光範圍,且能隙寬皆在紅外線擴及可見光範圍中。此外,在TiO2的表面吸附電子軌域圖也可以看出,當PbS量子點激發後電子會往TiO2傳遞,故可以數種奈米科技增加QDSSC中太陽光的吸收率與光電轉換效率。


    摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 - 1 - 1.1 前言 - 1 - 1.2 研究動機與目的 - 3 - 1.3 量子點敏化太陽能電池 - 4 - 1.4 文獻回顧 - 6 - 第二章 理論計算方法 - 10 - 2.1 第一原理 - 10 - 2.2 密度泛函理論 - 11 - 2.3 Kohn-Sham方法 - 12 - 2.4 自洽場計算 - 14 - 2.5 B3LYP理論 - 15 - 2.6與時間相關泛函密度理論(TD-DFT) - 16 - 2.6.1擴展Runge-Gross理論 - 17 - 2.6.2時間相依Kohn-Sham方程式 - 18 - 2.6.3線性響應定理 - 19 - 2.7 Marcus Theory - 21 - 2.8幻數(Magic Number) - 24 - 第三章 模型建構與模擬方法 - 25 - 3.1計算模擬流程 - 25 - 3.2設定模擬方法 - 26 - 第四章 結果與討論 - 32 - 4.1最佳化之(PbS)n結構 - 32 - 4.2能隙(Band Gap)與狀態密度函數(Density of States) - 35 - 4.3吸收光譜 - 43 - 4.4 Reorganization Energy (重組能) - 48 - 4.5量子點與二氧化鈦陽極連結性 - 50 - 第五章 結論與未來建議 - 54 - 5.1結論 - 54 - 5.2未來工作 - 56 - 參考文獻 - 58 - 附錄A - 65 - 圖目錄 圖1.1各種能源的總功率圖 1 圖1.2各國對各種太陽能電池之研究發展圖 2 圖1.3量子點敏化太陽電池發電原理 4 圖1.4寬能隙半導體材料的能帶位置 7 圖1.5常見半導體材料的能隙值 8 圖2.1自洽方程式疊代流程 15 圖2.2電子反應傳遞過程之曲線圖 22 圖2.3電子反應傳遞過程之非絕熱曲線圖 23 圖3.1模擬流程 25 圖3.2 LANL2DZ函數基底組適用之元素 26 圖3.3電洞傳遞過程 Vertical Transition與結構重整之能階示意圖 29 圖3.4電子傳遞過程 Vertical Transition與結構重整之能階示意圖 30 圖4.1原子示意圖 32 圖4.2 (PbS)n幾何結構最佳化 33 圖4.3 PbS小型量子點示意圖 34 圖4.4 (PbS)n的Band gap值 36 圖4.5 DSSC內部電子傳遞路徑 37 圖4.6使用B3LYP計算(PbS)n之能階圖 38 圖4.7使用B3LYP計算(PbS)n之態密度分布圖 39 圖4.8使用B3LYP計算(PbS)n之溶劑效應能階圖 40 圖4.9計算與實驗不同粒徑PbS量子點之能隙寬 41 圖4.10 (PbS)n之吸收光譜 43 圖4.11 (PbS)n之分子軌道 45 圖4.12 TiO2結構 50 圖4.13吸附後的分子軌域圖 52 表目錄 表3.1 (PbS)n氣態中結構最佳化與振動頻率之計算參數 27 表3.2 (PbS)n氣態中單點能量之計算參數 27 表4.1 (PbS)n最佳化結構後之總能量(Hartree) 34 表4.2 (PbS)n之莫耳體積與粒徑 35 表4.3 吸收波長的計算值 44 表4.4 (PbS)24~44 Vertical Transition值 48 表4.5不同染料及量子點的重組能 49 表4.6 PbS+TiO2 adsorption energy 51 表5.1 PbS光電性質整理表 55

    [1] http://en.wikipedia.org/wiki/Solar_cell
    [2] B. O’Regan and M. Grätzel, A low-cost, “high-efficiency solar cell based on dye-sensitized colloidal TiO2 film”, Nature, Vol. 353, pp. 737, 1991.
    [3] A. J. Nozik, “Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots”, Annual Review of Physical Chemistry, Vol. 52, pp.193-231, 2001.
    [4] Y. L. Lee, C. F. Chi and S. Y. Liau, “CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectron chemical Cell”, Chemistry of Materials, Vol.22, pp.922-927, 2010.
    [5] A. J. Nozik, “Quantum dot solar cells”, Physica E, Vol. 14, pp. 115-120, 2002.
    [6] A.Hagfeldt and M. Grätzel, “Molecular Photovoltaics”, Acc. Chem ., Res. 33,pp. 269, 2000.
    [7] F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations”, Journal of Physical Chemistry, Vol. 44, pp. 865-873, 1940.
    [8] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes I”, Journal of Physical Chemistry, Vol. 69, pp. 641-647, 1965.
    [9] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes II”, Journal of Physical Chemistry, Vol. 69, pp. 647-656, 1965.
    [10] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes III”, Journal of Physical Chemistry, Vol. 69, pp. 2834-2841, 1965.
    [11] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes IV”, Journal of Physical Chemistry, Vol. 69, pp. 2842-2848, 1965.
    [12] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte/platinum photocell”, Nature, Vol. 261, pp. 402-403, 1976.
    [13] M. Grätzel, Nature, vol. 414, pp. 338, 2001.
    [14] M.Law, L. E. Greene, J .C. Johnson, R. Saykally and P.D. Yang, “Nanowire dye-sensitized solar cells”, Nature materials, Vol. 4, pp. 455, 2005.
    [15] A. Key, M. Grätzel, “Dye-Sensitized Core−Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide”, Chem. Mate, Vol. 14, pp. 2930, 2002.
    [16] K.Sayama, H.Sugihara and H.Arakawa, “Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye”, Chem.Mater, Vol.10, pp.3825, 1998.
    [17] A. Hagfeldt and M. Grätzel, “Molecular photovoltaics”, Accounts of Chemical Research, Vol. 33, pp. 269-277, 2000.
    [18] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, Journal of the American Chemical Society, Vol.127, pp. 16835-16847, 2005.
    [19] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Aibabaei, Cevey ha Ngoc le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, “Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells”, Journal of ACS NANO, Vol. 3, pp. 3103-3109, 2009.
    [20] L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots”, Chemical Communications, Vol. 10, pp. 1030-1031, 2002.
    [21] I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 Films”, Journal of the American Chemical Society, Vol. 128, pp. 2385-2393, 2006.
    [22] J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Micic, and A. J. Nozik, “Electron and hole yransfer from indium phosphide quantum dots”, Journal of Physical Chemistry B., Vol. 109, pp. 2625-2631, 2005.
    [23] R. D. Schaller, V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implication for solar energy conversion”, Physical Reivew Letters, Vol. 92, pp. 186601, 2004.
    [24] S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics”, Nature Materials, Vol. 4, pp. 138-142, 2005.
    [25] S. Hotchandani and P. V. Kamat, “Charge-transfer processes in coupled semiconductor systems Photochemistry and photo- electrochemistry of the colloidal cadmium sulfide-zinc oxide system”, Journal of Physical Chemistry, Vol. 96, pp. 6834-6839, 1992.
    [26] R.Vogel, P. Hoyer and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as Sensitizer for Various Nanoporous Wide-Bandgap Semiconductors”, J. Phys. Chem. Vol.98, pp. 3183, 1994
    [27] R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum dot sensitization of organic-inorganic hybrid solar cells”, Journal of Physical Chemistry B, Vol. 106, pp. 7578, 2002.
    [28] H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grazel and M. K. Nazeeruddin, “CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity”, Journal of Physical Chemistry C, Vol. 112, pp. 11600-11608, 2008.
    [29] Hyo Joong Lee, Peter Chen, Soo-Jin Moon, Fr d ric Sauvage, Kevin Sivula, Takeru Bessho, Daniel R. Gamelin, Pascal Comte, Shaik M. Zakeeruddin, Sang Il Seok, Michael Grätzel and Md. K. Nazeeruddin, “Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator”, Langmuir, Vol. 25 , pp. 7602–7608, 2009.
    [30] Ni Zhao, Tim P. Osedach, Liang-Yi Chang, Scott M. Geyer, Darcy Wanger, Maddalena T. Binda, Alexi C. Arango, Moungi G. Bawendi and Vladimir Bulovic Colloidal, “PbS Quantum Dot Solar Cells with High Fill Factor”, ACS NANO , Vol. 4, No. 7, 2010.
    [31] I. N. Levine, Quantum Chemistry 6th ed., Prentice Hall, New York, 2008. (ISBN: 0132358506)
    [32] D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials”, Physical Review Letters, Vol. 43, pp. 1494-1497, 1979.
    [33] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy”, Physical Review B, Vol. 45, pp. 13244-13249, 1992.
    [34] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A, Vol. 38, pp. 3090-3100, 1988.
    [35] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, Vol. 37, pp. 785-789, 1988.
    [36] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple”, Physical Review Letters, Vol. 77, pp. 3865-3868, 1996.
    [37] M. A. L. Marques, E. K. U. Gross, “Time-Dependent Density Functional Theory”, Annual Review of Physical Chemistry, Vol. 97, pp. 1056, 2004
    [38] R. A. Marcus, “On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer.1”, J. Chem. Phys., Vol. 24, pp. 966, 1956.
    [39] A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, I. Tanihata, “New Magic Number, N = 16, near the Neutron Drip Line”, Phys. Rev. Lett., Vol. 84, pp. 5493–5495, 2000.
    [40] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
    [41] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg”, Journal of Chemical Physics, Vol. 82, pp. 270-283, 1984.
    [42] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi”, Journal of Chemical Physics, Vol. 82, pp. 284-298, 1984.
    [43] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals”, Journal of Chemical Physics, Vol. 82, pp. 299-310, 1984.
    [44] S.F. Nelsen, D.A. Trieber, R.F. Ismagilov and Y. Teki, “Solvent Effects on Charge Transfer Bands of Nitrogen-Centered Intervalence Compounds”, J. Am. Chem. Soc., Vol. 123, pp. 5684–5694, 2001.
    [45] S.F. Nelsen and F. Blomgren, “Estimation of Electron Transfer Parameters from AM1 Calculations”, J. Org. Chem., Vol. 66, pp. 6551–6559, 2001.
    [46] C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller, “Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment”, Science, Vol. 329, pp. 550, 2010.
    [47] J. He, C. Liu, F. Li, R. Sa, K. Wu, “Size-dependence of stability and optical properties of lead sulfide clusters”, Chemical Physics Letters, Vol. 457, pp. 163-168, 2008.
    [48] B. R. Hyun, Y. W. Zhong, A. C. Bartnik, L. Sun, H. D. Abruna, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, and N. F. Borrelli, “Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles”, ACS.NANO, vol. 2, no. 11, 2008.
    [49] J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Sero, “Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method”, J. AM. CHEM. SOC., Vol. 126, pp. 13550-13559, 2004.
    [50] M. Pastore, S. Fantacci and F. de Angelis, “Ab Initio Determination of Ground and Excited State Oxidation Potentials of Organic Chromophores for Dye-Sensitized Solar Cells”, J. Phys. Chem. C, Vol. 114, pp. 22742–22750, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE