簡易檢索 / 詳目顯示

研究生: 蔡志群
Tsai, Chih-Chun
論文名稱: Gamma 衰變過程之設計與分析
Design and Analysis of Gamma Degradation Process
指導教授: 曾勝滄
Tseng, Sheng-Tsaing
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 98
中文關鍵詞: Gamma 衰變模型Wiener 衰變模型逐步應力加速衰變試驗模型誤判分析最佳試驗計畫預燒測試混合分配
外文關鍵詞: Gamma degradation process, Wiener degradation process, step-stress accelerated degradation tests, model mis-specification, optimal test plan, burn-in test, mixture distribution
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高可靠度的時代為了提升產品競爭力,製造商必須即時地提供顧客有關產品可靠度的訊息(如平均失效時間)。唯高可靠度產品之壽命推論,即使利用加速壽命試驗, 亦很難在有限的測試時間內獲得產品失效資料。此時, 若存在與壽命相關之品質特徵值(quality characteristics, QC)且會隨時間逐漸衰變,則可藉由衰變路徑來推估產品壽命相關資訊。因此, 對於生產製造商而言,如何建構衰變模
    型及推論產品壽命分配,將顯得格外重要。文獻上有關衰變模型之建構,大都以隨機效應(random effect) 或Wiener 過程之衰變模型來描述之。然而對於產品的衰變路徑為單調遞增,如金屬疲勞(metal fatigue), 此時若採用隨時間遞增之gamma過程來描述產品衰變路徑將更為合理。本論文主要針對gamma衰變模型探討以下三個研究主題:
    (1) 此研究主題以laser產品為動機例子,主要探討當gamma衰變模型被誤判為Wiener衰變模型時,對於產品平均壽命估計值之準確度(accuracy)與精確度(precision)的影響。具體來說,本文導出在大樣本下,當模型發生誤判時,產品平均壽命估計量的漸近分配,藉此結果可探討模型誤判對於產品平均壽命之影響。結果顯示臨界值(critical value)與gamma衰變模型中的尺度(scale)參數之比值,會影響產品平均壽命估計值之準確度。而當gamma衰變模型中的形狀(shape)或尺度參數大時,模型誤判對於產品平均壽命估計值之精確度的影響是不容忽視的。此外, 在小樣本或較短測試時間下,本主題以模擬方式探討誤判對於產品平均壽命估計值之影響, 其模擬結果與
    大樣本下的結論是差異不大的。
    (2) 逐步應力加速衰變試驗(step-stress accelerated degradation test, SSADT)是推估高可靠度產品壽命之一可行方法, 其優點是以較少的測試樣本及試驗設備, 在較短的實驗時間內, 可迅速推估高可靠度產品的壽命分配資訊。本主題首先建構出gamma過程之SSADT衰變模型,並在試驗總成本不超過事先給定的預算下,尋找一最佳試驗計畫(optimal test plan)。換言之,極小化產品平均失效時間估計值之近似變異數,以獲得最佳樣本數、每一應力水準下的量測次數與量測頻率。藉由敏感度分析(sensitivity analysis)可知
    最佳試驗計畫的表現是相當穩健的。此外,在節省成本考量下,可對SSADT之最佳化問題增加限制條件, 以解得次最佳(suboptimal) 試驗計畫。本主題亦將上一主題的模型誤判問題推廣到SSADT上,探討誤判對於產品MTTF之壽命推估的影響。結果顯示在SSADT下,誤判gamma衰變模型為Wiener衰變模型對於產品壽命估計精確度的影響是相當嚴重的。
    (3) 預燒試驗(burn-in test)可有效地在產品運送到顧客手中之前,將產品製造過程中所產生的潛在失效與不良產品加以剔除。對於現今高可靠度產品,可收集與產品可靠度相關的QC,藉由收集到的衰變資料來進行篩選試驗。本主題假設產品之衰變路徑來自混合gamma 衰變模型, 並訂定如何區別正常產品與不良產品的準則,接著推導出每個時間點下的最佳切斷點(cutoff point), 再以極小化總成本函數得到最佳之預燒時間。除此之外, 本文亦探討混合gamma衰變模型被誤判為混合Wiener衰變模型之誤判問題,模擬結果顯示模型誤判對於預燒試驗的錯誤分類機率將有很大的影響。


    Nowadays, degradation analysis has been widely used to assess the lifetime information of highly reliable products. In the literature, degradation models are
    mostly built by the randomeffect models and/orWiener process. However, for materials that lead to fatigue data, it is more appropriately modeled by a gamma process
    which exhibits a monotonic increasing pattern. Hence, it is of great interest to design and analyze the degradation tests based on gamma process. In this thesis, we study the following three topics.
    (1) Motivated by laser data,we discuss the effects ofmodelmis-specificationwhen the truemodel comes fromgamma degradationprocess, and iswrongly treated as Wiener degradation process. We derive the asymptotic distribution of quasi MLE (QMLE) so that the penalty formodelmis-specification can be addressed sequentially. The result demonstrates that the effect on the accuracy of the product’smean-time-to failure (MTTF) prediction strongly depends on the ratio of critical value and scale parameter of gamma degradation process. Besides, the effects on the precision of the product’s MTTF prediction are critical
    when the shape and scale parameters of gamma degradation process are large enough. Furthermore,we use a simulationstudy to address the penalty of model mis-specification. The simulation result is quite close to the theoretical result even when the sample size and termination time are not large enough.
    (2) Step-stress accelerated degradation test (SSADT) is a useful tool for assessing the lifetime distribution of highly reliable products when the available test items are very few. Firstly, we propose the SSADT model based on a gamma process with a linear degradation path. Under the constraint that the total experimental cost not exceeding a pre-specified budget, the optimal test plan can be obtained by minimizing the approximate variance of the estimated MTTF
    of the lifetime distribution of the product. The sensitivity analysis reveals that the optimal test plan is quite robust to moderate departures from the model
    parameters. Furthermore,we address the effect ofmodelmis-specification under SSADT. The results show that the effect on the accuracy of product’s MTTF prediction is not so critical, while the effect on the precision of product’s MTTF prediction is substantial when gamma degradation process ismis-specified as Wiener degradation process.
    (3) Burn-in test has been widely used to eliminate latent failures or weak components in the factory before the products are shipped to the customers. The traditional burn-in test over a short period of time to collect time-to-failure data is rather inefficient. This decision problem can be solved by degradation models. We first propose amixture gamma process to describe the degradation path of the product. Next, a decision rule for classifying a unit as a normal or a weak unit is proposed. Finally, a cost model is used to determine the optimal burn-in time. Furthermore,we address themis-specification issue of treating a mixture gamma degradation process as amixtureWiener degradation process by a simulation study. The results reveal that the effect on the probabilities of
    misclassification is significant.

    1 緒論1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 衰變模型之簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 隨機效應之衰變模型. . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Wiener過程之衰變模型. . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Gamma過程之衰變模型. . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 研究主題與動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 研究架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 文獻回顧9 2.1 Wiener及gamma過程與壽命分配之關聯. . . . . . . . . . . . . . . . . 9 2.2 SSADT之衰變模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 模型誤判之理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Gamma與Wiener衰變模型之誤判分析19 3.1 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 動機例子. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 當gamma衰變模型被誤判為Wiener衰變模型時,對產品MTTF 估計值之影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 回顧動機例子. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.1 有限樣本數及終止時間之模擬分析. . . . . . . . . . . . . . . . 27 3.5 Wiener衰變模型被誤判為gamma衰變模型之模擬分析. . . . . . 31 3.6 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7 附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7.1 矩陣C(G : W)之推導. . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7.2 ØMTTFG 的近似變異數之推導. . . . . . . . . . . . . . . . . . . . 34 4 Gamma衰變模型之SSADT最佳試驗計畫37 4.1 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 問題描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Gamma過程之SSADT衰變模型. . . . . . . . . . . . . . . . . . . . . . . 40 4.4 最佳試驗計畫. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.1 ØMTTFG0 之近似變異數. . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4.2 成本函數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4.3 最佳化模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.4 最佳試驗計畫之求解步驟. . . . . . . . . . . . . . . . . . . . . . . 43 4.5 最佳試驗計畫舉例說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5.1 最佳SSADT試驗計畫. . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.5.2 敏感度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.3 SSADT次最佳試驗計畫. . . . . . . . . . . . . . . . . . . . . . . . 47 4.5.4 SSADT試驗計畫之穩定性. . . . . . . . . . . . . . . . . . . . . . . 47 4.6 在SSADT 下, gamma 衰變模型被誤判為Wiener 衰變模型之效 應分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.7 模型誤判舉例說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.7.1 在SSADT下,有限樣本數與終止時間之模擬分析. . . . . . 53 4.8 在SSADT 下, Wiener 衰變模型被誤判為gamma衰變模型之模 擬分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.9 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.10 附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.10.1 I (G0)之推導. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.10.2 (4.16)之證明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.10.3 C(G0 : W0 = ∗W 0)之推導. . . . . . . . . . . . . . . . . . . . . . 60 5 Gamma衰變模型之最佳預燒決策63 5.1 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 預燒衰變試驗模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 最佳預燒決策. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.1 最佳切斷點. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.2 最佳預燒時間之決定. . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.4 模型參數估計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.5 實例說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.6 混合gamma衰變模型被誤判為混合Wiener衰變模型之模擬分析74 5.7 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.8 附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.8.1 定理5.1之證明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.8.2 系理5.1之證明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.8.3 系理5.2之證明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6 結論與後續研究85 參考文獻89

    [1] 彭健育(2008). “高可靠度產品之衰變試驗分析,”國立清華大學統計學研究
    所博士論文.
    [2] Abdel-Hameed, M. (1975). “A gamma wear process,” IEEE Transactions
    on Reliability, 24, 152–153.
    [3] Bae, S. J., Kim, S. J., Kim, M. S., Lee, B. J. and Kang, C. W. (2008). “Degradation
    analysis of nano-contamination in plasma display panels,” IEEE
    Transactions on Reliability, 57, 222–229.
    [4] Bae, S. J. and Kvam, P.H. (2004). “A nonlinear random-coefficientsmodel
    for degradation testing,” Technometrics, 46, 460–469.
    [5] Bae, S. J. and Kvam, P. H. (2006). “A change-point analysis for modeling
    incomplete burn-in for light displays,” IIE Transactions, 38, 489–498.
    [6] Bagdonavicius, V. and Nikulin, M. (2002). Accelerated Life Models : Modeling
    and Statistical Analysis, Chapman & Hall/CRC, New York.
    [7] Balka, J., Desmond, A. F. and McNicholas, P. D. (2009). “Review and implementation
    of curemodels based on first hitting times forWiener processes,”
    Lifetime Data Analysis, 15, 147–176.
    [8] Berman, M. (1981). “Inhomogeneous and modulated gamma processes,”
    Biometrika, 68, 143–152.
    [9] Birnbaum, Z. W. and Saunders, S. C. (1969). “A new family of life distributions,” Journal of Applied Probability, 6, 319–327.
    [10] Boulanger,M. and Escobar, L. A. (1994). “Experimental design for a class
    of accelerated degradation tests,” Technometrics, 36, 260–272.
    [11] Cha, J. H. (2006). “A stochastic model for burn-in procedures in accelerated
    environment,” Naval Research logistics, 53, 226–234.
    [12] Cha, J. H. and Mi, J. (2007). “Optimal burn-in procedure for periodically
    inspected systems,” Naval Research logistics, 54, 720–731.
    [13] Chang, D. S. (2000). “Optimal burn-in decision for products with an unimodel
    failure rate function,” European Journal of Operational Research,
    126, 534–540.
    [14] Chao, M. T. (1999). “Degradation analysis and related topics: Some
    thoughts and a review,” The Proceedings of the National Science Council.
    A, 23, 555–566.
    [15] Chen, Z. and Zheng, S. (2005). “Lifetime distribution based degradation
    analysis,” IEEE Transactions on Reliability, 54, 3–10.
    [16] Chhikara, R. S. and Folks, L. (1989). The Inverse Gaussain Distribution.
    Theory,Methodology, and Applications,Marcel Dekker, New York.
    [17] Chien, W. T. K. and Kuo, W. (1997). “A nonparametric Bayes approach to
    decide system burn-in time,” Naval Research logistics, 44, 655–671.
    [18] Corless, R.M., Gonnet, D. E. G., Jeffrey, D. J. and Knuth, D. E. (1996). “On
    the Lambert W function,” Advances in Computational Mathematics, 5,
    329–359.
    [19] Crowder, M. and Lawless, J. F. (2007). “On a scheme for predictive maintenance,”
    European Journal of Operational Research, 16, 1713–1722.
    [20] Doksum, K. A. andH´oyland, A. (1992). “Model for variable-stress accelerated
    life testing experiments based onWiener processes and the inverse
    Gaussian distribution,” Technometrics, 34, 74–82.
    [21] Doksum, K. A. and Normand, S.-L. T. (1995). “Gaussianmodels for degradation
    processes - Part I: methods for the analysis of biomarker data,”
    Lifetime Data Analysis, 1, 135–144.
    [22] Horrocks, J. and Thompson, M. E. (2004). “Modeling event times with
    multiple outcomes using the Wiener process with drift,” Lifetime Data
    Analysis, 10, 29–49.
    [23] Hsieh, M. H. and Jeng, S. L. (2007). “Accelerated discrete degradation
    models for leakage current of ultra-thin gate oxides,” IEEE Transactions
    on Reliability, 56, 369–380.
    [24] Ishwaran, I. and James, L. F. (2004). “Computational methods for multiplicative
    intensity models using weighted gamma processes: proportional
    hazards, marked point processes, and panel count data,” Journal
    of the American Statistical Association, 99, 175–190.
    [25] Jensen, F. and Petersen, N. E. (1982). Burn-in: An Engineering Approach
    to The Design and Analysis of Burn-in Procedures, John Wiley & Sons,
    New York.
    [26] Kalbfleisch, J. D. and Prentice, R. I. (2002). The Statistical Analysis of Failure
    Time Data, John Wiley & Sons, New York.
    [27] Kim, K. O. and Kuo, W. (2003a). “A general model for heterogeneous system
    lifetime and conditions for system burn-in,” Naval Research Logistics,
    50, 364–380.
    [28] Kim, K. O. and Kuo,W. (2003b). “Percentile residual life and system reliability as performancemeasures in the optimal system design,” IIE Transactions,
    35, 1133–1142.
    [29] Kuo,W. (1984). “Reliability enhancement through optimal burn-in,” IEEE
    Transactions on Reliability, 3, 145–156.
    [30] Kuo, W. and Kuo, Y. (1983). “Facing the headaches of early failures: a
    state-of-the-art review of burn-in decisions,” Proceedings of the IEEE, 71,
    1257–1266.
    [31] Lawless, J. F. (2002). Statistical Models and Methods for Lifetime Data,
    JohnWiley & Sons, New York.
    [32] Lawless, J. F. and Crowder, M. (2004). “Covariates and random effects in
    a gamma process model with application to degradation and failure,”
    Lifetime Data Analysis, 10, 213–227.
    [33] Lawrence, M. J. (1966). “An investigation of the burn-in problem,” Technometrics,
    8, 61–71.
    [34] Lee, M. -L. T. and Whitmore, G. A. (1993). “Stochastic processes directed
    by randomized time,” Journal of Applied Probability, 30, 302–314.
    [38] Leemis, L. M. and Beneke, M. (1990). “Burn-in models and methods: a
    review,” IIE Transactions, 22, 172–180.
    [36] Li, Q. and Kececioglu, D. B. (2004). “Optimal design of accelerated degradation
    tests,” International Journal ofMaterials and Product Technology,
    20, 73–90.
    [37] Liao, C. M. and Tseng, S. T. (2006). “Optimal design for step-stress accelerated
    degradation tests,” IEEE Transactions on Reliability, 55, 59–66.
    [38] Lindstrom, M. J. and Bates, D. M. (1990). “Nonlinear mixed effects models for repeatedmeasures data,” Biometrics, 46, 673–687.
    [39] Lu, J. C. and Meeker, W. Q. (1993). “Using degradation measures to estimate
    a time-to-failure distribution,” Technometrics, 35, 161–173.
    [40] Mahmoud, M. A. W. and Moustafa, H. M. (1993). “Estimation of a discriminant
    function fromamixture of two gamma distributions when the
    sample size is small,”Mathematical and computermodelling, 18, 87–95.
    [41] Meeker,W. Q. and Escobar, L. A. (1998). StatisticalMethods for Reliability
    Data, JohnWiley & Sons, New York.
    [42] Meeker, W. Q., Escobar, L. A. and Lu, C. J. (1998). “Accelerated degradation
    tests: modeling and analysis,” Technometrics, 40, 89–99.
    [43] Moran, P. A. P. (1954). “A probability theory of dams and storage systems,”
    Australian Journal of Applied Science, 5, 116–124.
    [44] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and
    Data Analysis, John Wiley & Sons, New York.
    [45] Nguyen, D. G. andMurthy, D. N. P. (1982). “Optimal burn-in time tominimize
    cost for products sold under warranty,” IIE Transactions, 14, 167–
    174.
    [46] Noortwijk, J. M. V. (2009). “A survey of the application of gamma processes
    in maintenance,” Reliability Engineering & System Safety, 94, 2–
    21.
    [47] Padgett, W. J. and Tomlinson, M. A. (2004). “Inference from accelerated
    degradation and failure data based on Gaussian process models,” Lifetime
    Data Analysis, 10, 191–206.
    [48] Park, C. and Padgett, W. J. (2005). “Accelerated degradation models for failure based on geometric Brownianmotion and gamma process,” Lifetime
    Data Analysis, 11, 511–527.
    [49] Park, C. and Padgett, W. J. (2006). “Stochastic degradation models with
    several accelerating variables,” IEEE Transactions on Reliability, 55, 379–
    390.
    [50] Park, J. I. and Yum, B. J. (1997). “Optimal design of accelerated degradation
    tests for estimatingmean lifetime at the use condition,” Engineering
    Optimization, 28, 199–230.
    [51] Park, S. J., Yum, B. J. and Balamurali, S. (2004). “Optimal design of stepstress
    degradation tests in the case of destructivemeasurement,” Quality
    Technology & Quantitative Management, 1, 105–124.
    [52] Pascual, F. G. (2005). “Maximum likelihood estimation under misspecified
    lognormal and weibull distributions,” Communications in Statistics
    – Simulation and Computation, 34, 503–524.
    [53] Pascual, F. G. (2006). “Accelerated life test plans robust to misspecification
    of the stress-life relationship,” Technometrics, 48, 11–25.
    [54] Pascual, F. G. andMontepiedra, G. (2003). “Model-robust test plans with
    applications in accelerated life testing,” Technometrics, 45, 47–57.
    [55] Pascual, F.G. andMontepiedra, G. (2005). “Lognormal andWeibull accelerated
    life test plans under distributionmisspecification,” IEEE Transactions
    on Reliability, 54, 43–52.
    [56] Peng, C. Y. and Tseng, S. T. (2009). “Mis-specification analysis of linear
    degradationmodels,” IEEE Transactions on Reliability, To appear.
    [57] Seshadri, V. (1999). Inverse Gaussian Distribution: Statistical Theory and Applications, Springer-Verlag, New York.
    [58] Shiau, H. J. J. and Lin, H. H. (1999). “Analyzing accelerated degradation
    data by nonparametric regression,” IEEE Transactions on Reliability, 48,
    149–158.
    [59] Singpurwalla, N. D. (1995). “Survival in dynamic environments,” Statistical
    Science, 10, 86–103.
    [60] Tseng, S. T., Balakrishnan, N. and Tsai, C. C. (2009). “Optimal step-stress
    accelerated degradation test plan for gamma degradation process,” IEEE
    Transactions on Reliability, To appear.
    [61] Tseng, S. T., Hamada, M. S. and Chiao, C. H. (1995). “Using degradation
    data from a fractional factorial experiment to improve fluorescent lamp
    reliability,” Journal of Quality Technology, 27, 363–369.
    [62] Tseng, S. T. and Liao, C. M. (1998). “Optimal design for a degradation
    test,” International Journal ofOperations andQuantitativeManagement,
    4, 293–301.
    [63] Tseng, S. T. and Peng, C. Y. (2004). “Optimal burn-in policy by using an
    integratedWiener process,” IIE Transactions, 36, 1161–1170.
    [64] Tseng, S. T. and Peng, C. Y. (2007). “Stochastic diffusion modeling of
    degradation data,” Journal of Data Science, 5, 315–333.
    [65] Tseng, S. T. and Tang, J. (2001). “Optimal burn-in time for highly reliable
    products,” International Journal of Industrial Engineering, 8, 329–338.
    [66] Tseng, S. T., Tang, J. and Ku, I. H. (2003). “Determination of burn-in parameters
    and residual life for highly reliable products,” Naval Research
    Logistics, 50, 1–14.
    [67] Tseng, S. T. and Wen, Z. C. (2000). “Step-stress accelerated degradation
    analysis of highly-reliable products,” Journal of Quality Technology, 32,
    209–216.
    [68] Tseng, S. T. and Yu, H. F. (1997). “A termination rule for degradation experiments,”
    IEEE Transactions on Reliability, 46, 130–133.
    [69] Venturini, S.,Dominici, F. and Parmigiani,G. (2008). “Gamma shapemixtures
    for heavy-tailed distributions,” The Annals of Applied Statistics, 2,
    756–776.
    [70] Wang, X. (2008). “A pseudo-likelihood estimationmethod for nonhomogeneous
    gamma process model with random effects,” Statistica Sinica,
    18, 1153–1163.
    [71] Watson, G. S. and Wells, W. T. (1961). “On probability of improving the
    mean useful life of items by eliminating thosewith short lives,” Technomterics,
    3, 281–298.
    [72] White, H. (1982). “Maximumlikelihood estimation ofmisspecifiedmodels,”
    Econometrica, 50, 1–25.
    [73] Whitmore, G. A. (1995). “Estimating degradation by a Wiener diffusion
    process subject to measurement error,” Lifetime Data Analysis, 1, 307–
    319.
    [74] Whitmore, G. A., Crowder, M. I. and Lawless, J. F. (1998). “Failure inference
    from a marker process based on a bivariate model,” Lifetime Data
    Analysis, 4, 229–251.
    [75] Whitmore, G. A. and Schenkelberg, F. (1997). “Modelling accelerated
    degradation data using Wiener diffusion with a time scale transformation,”
    Lifetime Data Analysis, 3, 27–45.
    [76] Wu, C. J. and Chang, C. T. (2002). “Optimal design of degradation tests in
    presence of cost constraint,” Reliability Engineering & System Safety, 76,
    109–115.
    [77] Wu, S. and Xie,M. (2007). “Classifying weak, and strong components using
    ROC analysis with application to burn-in,” IEEE Transactions on Reliability,
    56, 552–561.
    [78] Yu, H. F. (2002). “Optimal selection of the most reliable product with
    degradation data,” Engineering Optimization, 34, 579-590.
    [79] Yu, H. F. (2003). “Optimal selection of the most reliable product whose
    degradation path satisfies Wiener process,” International Journal of
    Quality and Reliability Management, 20, 1084-1095.
    [80] Yu, H. F. (2006). “Designing an accelerated degradation experiment with
    a reciprocal Weibull degradation rate,” Journal of Statistical Planning
    and Inference, 136, 282–297.
    [81] Yu, H. F. (2007a). “Mis-specification analysis between normal and extreme
    value distribution for a linear regressionmodel,” Communications
    in Statistics-Theory andMethods, 36, 499–521.
    [82] Yu, H. F. (2007b). “Designing a screening experiment with reciprocal
    weibull degradation rates,” Computers&Industrial Engineering, 52, 175–
    191.
    [83] Yu, H. F. and Chiao, C. H. (2002). “An optimal designed degradation experiment
    for reliability improvement,” IEEE Transactions on Reliability,
    51, 427–433.
    [84] Yu, H. F. and Tseng, S. T. (1998). “On-line procedure for determining an appropriate termination time for an accelerated degradation experiment,”
    Statistica Sinica, 8, 207–220.
    [85] Yu, H. F. and Tseng, S. T. (1999). “Designing a degradation experiment,”
    Naval Research logistics, 46, 689–706.
    [86] Yu, H. F. and Tseng, S. T. (2002). “Designing a screening degradation experiment,”
    Naval Research Logistics, 49, 514–526.
    [87] Yu, H. F. and Tseng, S. T. (2004). “Designing a degradation experiment
    with a reciprocal Weibull degradation rate,” Quality Technology and
    Quantitative Management, 1, 47–63.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE