簡易檢索 / 詳目顯示

研究生: 溫志杰
Wen, Chih-Chieh
論文名稱: 利用側壁硼擴散技術製作新型三軸力量感測器之研究
The Study of Using Side-Wall-Doping Technology to Fabricate 3-Axis Force Sensors
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 109
中文關鍵詞: 側壁硼擴散壓阻觸覺感測器力量感測器神經電極
外文關鍵詞: sidewall doping, piezoresistor, tactile sensor, force sensor, neural probe
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微機電製程中,摻雜(doping)是一道常見的步驟,通常被利用來製作蝕刻終止層、訊號傳遞導線或是壓阻感測器。由於傳統製程上的限制,一般只能將原子摻雜在矽晶片(wafer)的正面(top surface),此種作法只能讓導線或是壓阻在元件的上表面形成,因而使元件在使用受到一些限制。因此,本論文將探討側壁摻雜製程(sidewall doping)在微機電感測器的應用,利用擴散將硼原子摻雜在元件的側面(side surface),利用其壓阻特性製作平板式三軸觸覺感測器以及探針式三軸力量感測器,並且探討側壁摻雜製程整合於微機電感測器的可行性。
    硼原子利用高溫擴散至元件後,即具有壓阻特性,本文中的觸覺感測器利用這種特性製做了四根懸臂樑結構,並將壓阻製作於懸臂樑的正面及側面,使其可以量測正向力量(normal force)及側向力量(lateral force),進而使感測器具有三軸的感測能力。此外,壓力計並利用高分子(polymer)材料當作薄膜層,藉由混合不同比例的高分子與金屬粉末,以改變其剛性,藉此調控壓力感測器的靈敏度(sensitivity)及量測範圍(sensing range),經初步校正,當薄膜的揚式係數(Young’s modulus)由1.32MPa增加至52.13MPa與479.25MPa時,壓力計的正向靈敏度會降低61%與84%,側向靈敏度則大約會降低59%與72%,而此時由於感測器薄膜的剛性增加,其感測範圍也會隨之增加,進而達到可隨意調控感測範圍之目的。
    另外,本研究也利用側壁硼擴散技術製作了探針式三軸力量感測器,在感測器的正面及側面分別製作了三個獨立的壓阻以感測三個方向的力量,經量測,微電極在x、y、z三個方向的力量靈敏度分別為0.47%/mN、0.16%/mN與1.29%/mN,並經由穿刺實驗,可得知探針式力量感測器在刺入物體時的機械特性與行為。除了可以製作壓阻外,硼擴散也可降低矽基材(silicon)的電阻值,進而當作導電元件使用,因此本研究便利用此項特性將探針式三軸力量感測器應用於感測神經訊號上,使之成為具有力量量測功能的神經電極(neural probe),由於硼原子可同時擴散至感測器針頭(tip)的正面與側面,因此可以減少非感測區域(non-sensing area)的面積,以增加使用時的方便性。而在1KHz的訊號下,當針頭面積為4483.2µm2與28944.27µm2時,其阻抗(impedance)分別為426.44kΩ與297.65kΩ,經由螯蝦的神經訊號量測發現,所量得的神經訊號與傳統玻璃電極所量得的訊號並無明顯差異,並經由多電極的量測,螯蝦神經訊號的平均傳遞速度約為10.39m/s。
    本研究將側壁硼擴散技術應用於兩種常見微機電感測器中,利用擴散後的壓阻特性製作出兩種三軸力量感測器:平板式三軸觸覺感測器與探針式三軸力量感測器,並已得到初步的結果,未來此製程技術可進一步應用於其他微機電元件中,以增加製程的多樣性及元件的應用性。


    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XVIII 第一章 序論 1 1-1研究動機 1 1-2文獻回顧 4 1-2-1觸覺感測器 4 1-2-2探針式力量感測器 6 1-2-3側壁摻雜感測器 7 1-3研究目標與全文架構 8 第二章 硼擴散壓阻效應與電學特性 21 2-1硼擴散簡介 21 2-2壓阻效應 23 2-3橋式電路 27 2-4硼擴散電學特性 27 第三章 平板式三軸觸覺感測器 33 3-1元件設計與分析 33 3-1-1設計概念 34 3-1-2有限元素法分析 35 3-2製程流程與結果 35 3-2-1製程步驟 36 3-2-2製程結果 38 3-3測試 38 3-3-1薄膜形貌量測與體積估算 38 3-3-2 PDMS剛性估算 39 3-3-3壓阻特性量測 40 3-3-4壓阻溫度係數 40 3-3-5陣列式感測器測試 41 3-4製程改進與討論 41 3-5小結 42 第四章 探針式三軸力量感測器 57 4-1元件設計與分析 57 4-2製程流程與結果 58 4-2-1製程步驟 59 4-2-2製程結果 60 4-3特性量測 60 4-3-1壓阻特性量測 60 4-3-2力量感測器穿刺能力測試 61 4-4探針式三軸力量感測器之應用 62 4-4-1神經電極電學特性量測 63 4-4-2生物訊號量測 64 4-4-3神經電極陣列 65 4-5小結 66 第五章 結論與未來工作 81 5-1研究成果 81 5-2未來工作 82 參考文獻 85 附錄A 量測電路設計 98 附錄B 光罩設計與製程結果 100 附錄C 側壁硼擴散其他應用 103 論文著作 109

    [1] R. Maeda, M. Takahashi, and S. Sasaki, “Commercialization of MEMS and Nano Manufacturing,” Proceeding of IEEE Polytronic Conference, 2007, pp. 20-23.
    [2] C.B. O’Neal, A.P. Malshe, S.B. Singh, and W.D. Brown, “Challenges in the Packaging of MEMS,” Proceeding of Internal Symposium on Advanced Packaging Materials, 1999, pp. 41-47.
    [3] R.R. Mansour, M.B. Kassem, M. Daneshmand, and N. Messiha, “RF MEMS Devices,” Proceeding of Internal Conference on MEMS, NANO, and Smart Systems, Canada, 2003.
    [4] R. Grundbacher, J.E. Hoetzel, and C. Hierold, “MEMSlab: A Practical MEMS Course for the Fabrication, Packaging, and Testing of a Single-Axis Accelerometer,” Journal of IEEE Transaction on Education, vol. 52, pp. 82-91, 2009.
    [5] W.S. Su, S.T. Lee, M.S. Tsai, and W. Fang, “Plasma Surface Modification, SAM Coating, and Contract displacement Electroless Plating,” Proceeding of IEEE MEMS 2006, Turkey, 2006, pp. 274-277.
    [6] H.A. Yang and W. Fang, “A Novel Coil-Less Lorentz Force 2D Scanning Mirror Using Eddy Current,” Proceeding of IEEE MEMS 2006, Turkey, 2006, pp. 774-777.
    [7] B. Stoeber and D. Liepmann, “Arrays of Hollow Out-of-Plane Microneedles for Drug Delivery,” Journal of Microelectromechanical Systems, vol. 14, pp. 274-279, 2005.
    [8] N. Roxhed, B. Samel, L. Nordquist, P. Griss, and G. Stemme, “Compact, Seamless Integration of Active Dosing and Actuation with Microneedles for Transdermal Drug Delivery,” Proceeding of IEEE MEMS 2006, Turkey, 2006, pp. 414-417.
    [9] S. Rosset, M. Niklaus, P. Dubois, M. Dadras, and H.R. Shea, “Mechanical Properties of Electroactive Polymer Microactuators with Ion Implanted Electrodes,” Proceeding of SPIE, 2007, pp. 652410 1-11.
    [10] C. Luo, J. Garra, T.W. Schneider, R. White, J. Currie, and M. Paranjape, “Determining Local Residual Strains of Polydimethylsilozane Using Ink Dots, and Stiffening Polydimethylsiloxane Using SU-8 Particles,” Journal of Micromechanics and Microengineering, vol. 12, pp. 677-681, 2002.
    [11] http://www.cronos.com
    [12] http://www.tronics.eu
    [13] http://www.microfabrica.com/pages/index.php
    [14] W.W. Hansen and J.R. Woodyard, "A New Principle in Directional Antenna Design", Proceedings of the Institute of Radio Engineers, 1938, pp.333-345.
    [15] http://en.wikipedia.org/wiki/Doping_(semiconductor)
    [16] J.R. Lowney and R.D. Larrabee, “The Use of Fick’s Law in Modeling Diffusion Procedded,” Journal of IEEE Transactions on Electron Devices, vol. 27, pp 1795-1798, 1980.
    [17] G. Brock, and F. Shelledy, “Batch-fabricated heads from an operational standpoint,” IEEE Transactions on Magnetics, 11, pp.1218 - 1220, 1975.
    [18] Y. Gianchandani, and K. Najafi, “Batch fabrication and assembly of micromotor-driven mechanisms with multi-level linkages,” Proceeding of MEMS’92, Travemunde, Germany, February, 1992, pp. 141-146.
    [19] B.H. Jo, L.M. Van Lerberghe, K.M. Motsegood, and D.J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Microelectromechanical Systems, pp.76-81, 2000.
    [20] R.H.W. Pijnenburg, R. Dekker, C.C.S. Nicole, A. Aubry, and E.H.E.C.Eummelen, “Integrated micro-channel cooling in silicon,” Proceeding of the 34th European Solid-State Device Research conference, Leuven, Belgium, September, 2004, pp.129-132.
    [21] H.Y. Chu, The DAWN Fabrication Platform for Three Dimensional Silicon Micromachining and Its Applications, Taiwan, National Tsing Hua University Ph.D. Dissertation, 2005.
    [22] H.Y. Chu, S.W. Lee, and W. Fang, ”Design and fabrication of multi-degrees-of-freedom single crystal silicon moveable platforms on SOI wafer,” Proceeding of Transducers’05, Seoul, Korea, June, 2005, pp. 737-740.
    [23] J. Hsieh, The BELST Fabrication Platform for High-Aspect-Ratio Micromachining and Its Applications, Taiwan, National Tsing Hua University Ph.D. Dissertation, 2002.
    [24] J. Hsieh and W. Fang, ”Fabrication of Micro Torsional Actuator Using Surface Plus Bulk Micromachining Processes,” Proceeding of SPIE, Santa Clara, CA, USA, 1998, pp. 368-376.
    [25] T. Chen, L. Chen, L. Sun, and X. Li, “Design and Fabrication of a Four-Arm-Structure MEMS Gipper”, IEEE Transactions on Industrial Electronics, vol. 56, pp. 996-1004, 2009.
    [26] X. Deng, W. Yang, H. Shen, Y. Yu, Y. Ge, and J. Sun, ”A Distributing and Decoupling Method of Microminiature Multi-dimension Robot Finger Force Sensor,” Proceeding of the 2007 IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2007, pp. 1517-1522.
    [27] A. Gieles, “Submmiature silicon pressure transducers”, Proceeding of Solid-State Circuits Conference, 1969, pp. 108-109.
    [28] T.N. Jackson, M.A. Tischler, and K.D. Wise, “An electrochemical P-N junction etch-stop for the formation of silicon microstructures”, Electron Device Letters, vol. 2, pp. 44-45, 1981.
    [29] S.K. Clark and K.D. Wise, “Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors”, IEEE Transactions on Electron Devices, vol. ED-26, pp. 1887-1896, 1979.
    [30] W.P. Eaton and J.H. Smith, “Micromachined pressure sensors: review and recent developments”, Smart Master., Struct., pp. 530-539, 1997.
    [31] M. Shikida, T. Shimizu, K. Sato, and K. Itoigawa, “Active Tactile Sensor for Detecting Contact Force,” Sensors and Actuators A, pp. 213-218, 2003.
    [32] Y. Hasegawa, M. Shikida, H. Sasaki, K. Itoigawa, and K. Sato, “An Active Tactile Sensor for Detecting Mechanical Characteristics of Contacted Objects,” Journal of Micromechanics and Microengineering, pp. 1625-1632, 2006.
    [33] K. Kim, K.R. Lee, D.S. Lee, N.K.Cho, W.H. Kim, K.B. Park, H.D. Park, Y.K. Kim, Y.K. Park, and J.H. Kim, “A Silicon-Based Flexible Tactile Sensor for Ubiquitous Robot Companion Applications,” Journal of Physics: Conference Series, pp. 399-403, 2006.
    [34] E.S. Hwang, J.H. Seo, and Y.J. Kim, “A Polymer-Based Flexible Tactile Sensor for Normal and Shear Load detection,” Proceeding of MEMS 2006, Long Beach, CA, USA, 2006, pp. 714-717.
    [35] J. Engel, J. Chen, Z. Fan, and C. Liu, “Polymer Micromachined Multimodal Tactile Sensors,” Sensors and Actuators A, pp. 50-61, 2005.
    [36] H.K. Lee, S.I. Chang, and E. Yoon, “A Capacitive Proximity Sensor in Dual Implementation with Tactile Imaging Capability on a Single Flexible Platform for Robot Assistant Applicaions,” Proceeding of MEMS 2006, Long Beach, CA, USA, 2006, pp. 606-609.
    [37] C.T. Ko, J.P. Wu, W.C. Wang, C.H. Huang, S.H. Tseng, Y.L. Chen, and M.S.C. Lu, “A Highly Sensitive CMOS-MEMS Capacitive Tactile Sensors,” Proceeding of MEMS 2006, 2006, pp. 642-645.
    [38] M. Tortonese, H. Yamada, R.C. Barrett, and C.F. Quate, “Atomic Force Microscopy using a Piezoresistive,” Proceeding of IEEE, 1991, pp. 448-451.
    [39] J. Brugger, J. Burger, M. Binggeli, R. Imura, and N.F. Rooij, “Lateral Force Measurement in a Scanning Force Microscope with Piezoresistive Sensors,” Proceeding of Transducers’95, 1995, pp. 636-639.
    [40] T.I. Yin and S.M. Yang, “Double-Microcantilever Design for Surface Stress Measurement in Biochemical Sensors,” Proceeding of Internal Conference on Advanced Intelligent Mechatronics, 2005, pp. 201-206.
    [41] F.T. Goericke and W.P. King, “Modeling Piezoresistive Microcantilever Sensor Response to Surface Stress for Biochemical Sensors,” IEEE Sensors Journal, vol. 8, pp. 1404-1410, 2008.
    [42] M. Tortonese, R.C. Barrett, and C.F. Quate, “Atomic Resolution with an Atomic Force Microscope Using Piezoresistive Detection,” Applied Physics Letters, vol. 62, pp. 834-836, 1992.
    [43] T.C. Duc, J.F. Creemer, and P.M. Sarro, “Lateral Nano-Newton Force-Sensing Poezoresistive Cantilever for Microparticle handling,” Journal of Micromechanics and Microengineering, vol. 16, pp. s102-s106, 2006.
    [44] T. Leichle, M. Lishchynska, F. Mathieu, J.B. Pourciel, D. Saya, and L. Nicu, “A Microcantilever-Based Picoliter Droplet Dispenser with Integrated Force Sensors and Electroassisted Deposition Means,” Journal of Microelectromechanical System, vol. 17, pp. 1239-1253, 2008.
    [45] S.M. Yang, C. Chang, and T.I. Yin, “On the Temperature Compensation of Parallel Piezoresistive Microcantilever in CMOS Biosensor,” Sensors and Actuators B, vol. 129, pp. 678-684, 2008.
    [46] W.T. Park, A. Partridge, R.N. Candler, V.A. Vitikkate, G. Yama, M. Lutz, and T.W. Kenny, “Encapsulated Submillimeter Piezoresistive Acceletometers,” Journal of Microelectromechanical System, vol. 15, pp. 507-514, 2006.
    [47] B.K. Nguyen, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Insertion Force Sensor by Sidewall-Doping with Rapid Thermal Diffusion,” Proceeding of MEMS’06, Istanbul, Turkey, 2006, pp. 662-665.
    [48] B.W. Chui, T.W. Kenny, H.J. Manin, B.D. Terris, and D. Rugar, “Independent Detection of Vertical and Lateral Forces with a Sidewall Implanted Dual-Axis Piezoresistive Cantilever,” Applied Physics Letters, vol. 72, pp. 1388-1390, 1998.
    [49] A. Partridge, J.K. Reynolds, B.W. Chui, E.M. Chow, A.M. Fitzgerald, L. Zhang, N.I. Maluf, and T.W. Kenny, “A High-Performance Planar Piezoresistive Accelerometer,” Journal of Microelectromechanical System, vol. 9, pp. 58-66, 2000.
    [50] A.A. Barlian, S.J. Park, V. Mukundan, and B.L. Pruitt, “Design and Characterization of Microfabricated Piezoresistive Floating Element-Based Shear Stress Sensors,” Sensors and Actuators A, vol. 134, pp. 77-87, 2007.
    [51] 莊達人,VLSI製造技術,台灣,高立圖書有限公司,2003。
    [52] 羅正忠、張鼎張,半導體製程技術導論,台灣,台灣培生教育出版股份有限公司,2004。
    [53] http://en.wikipedia.org/wiki/Doping_(semiconductor)
    [54] A.A. Barlian, W.T. Park, J.R. Mallon, JR., A.J. Rastegar, and B.L. Pruitt, ”Review: Semiconductor Piezoresistance for Micosystems,” Proceeding of the IEEE, 2009, pp. 513-552.
    [55] K. Suzuki and R. Rumpf, ”Fabrication of Narrow Gaps and Small Holes Using High Boron Diffusion,” Proceeding of Transduuers’99 , 1999, vol. 12, pp. 1094-1097.
    [56] http://cnx.org/content/m1036/2.11
    [57] I. Zubel and M. Kramkowska, "The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (100) Si Surface Etched in KOH and TMAH Solutions," Sensors and Actuators A, vol. 93, pp. 138-147, 2001.
    [58] J.R. Lai, Heavily Boron Doped Silicon Layer Etching and Stress for MEMS Application, Taiwan, National Tsing Hua University Master Thesis, 1999.
    [59] 黃調元,半導體元件物理與製作技術,2nd Ed.,台灣,國立交通大學出版社,2003。
    [60] 李世鴻,半導體物理及元件,3rd Ed.,台灣,台商圖書有限公司,2003。
    [61] http://hyperphysics.phy-astr.gsu.edu/hbase/solids/pnjun.html
    [62] C.S. Smith, “Piezoresistance Effect in Germanium and Silicon,” Physical Review, pp. 42-49, 1954.
    [63] W.G. Pfann and R.N. Thurston, “Semiconducting Stress Transducers Utilizing the Transverse and Shear Piezoresistance Effects,” Journal of Applied Physics, pp. 2008-2018, 1961.
    [64] Tufte and E.L. Stelzer, “Piezoresistive Properties of Silicon Diffused Layers,” Journal of Applied Physics, vol. 34, pp. 313-318, 1963.
    [65] K.E. Petersen, ”Silicon as a Mechanical Material,” Proceeding of IEEE , 1982, vol. 70, pp. 420-457.
    [66] B. Bae, B.R. Flachsbart, K. Park, and M.A. Shannon, "Design Optimization of a Piezoresistive Pressure Sensor Considering the Output Signal-to-Noise Ratio," Journal of Micromechanics and Microengineering, vol.143, pp. 1597-1607, 2004.
    [67] 國科會精儀中心,微機電系統技術與應用,2003。
    [68] S.M. Sze, Semiconductor Sensors, New York, John Wiley & Sons, Inc., 1994.
    [69] C.H. Hsu, Design, Fabrication, and Simulation Study of Piezoresistive Type Micro-flow Sensor, Taiwan, National Chung Cheng University Thesis, 2008.
    [70] A. Boukabache, P. Pons, G. Blasquez, and Z. Dibi, "Characterization and Modeling of the Mismatch of TCRs and Their Effects on the Drift of the Offset Voltage of Piezoresistive Pressure Sensors," Sensors and Actuators A, vol.84, pp. 292-296, 2000.
    [71] Y. Kanda, “A graphical representation of the piezoresistance coefficients in silicon,” Journal of IEEE Transaction Electron Device, 64-70, 1982.
    [72] L. Lin and W. Yun, “Design, Optimization and Fabrication of Surdace Micromachined Pressure Sensors,” Mechatronics, 505-519, 1998.
    [73] L. Lin and W. Yun, “MEMS Pressure Sensors for Aerospace Applications,” Mechatronics, 429-436, 1998.
    [74] J.A. Harley and T.W. Kenny, “1/F Noise Considerations for the Design and Process Optimization of Piezoresistive Cantilevers,” Journal of Microelectromechanical Systems, vol. 9, 226-235, 2000.
    [75] C.F. Hu, The Study of a Novel Flexible Pressure/Tactile Sensors Array, Taiwan, National Tsing Hua University Thesis, 2007.
    [76] C. Chivukula, M. Wang, H.F. Ji, A. Khaliq, J. Fang, and K. Varahramyan, “Simulation of SiO2-Based Piezoresistive Microcantilevers,” Sensors and Actuations A, vol. 125, 526-533, 2006.
    [77] www.techneglas.com
    [78] G. Cannata, and M. Maggiali, ”An Embedded Tactile and Force Sensor for Robotic Manipulation and Grasping,” Proceedings of 2005 5th IEEER-RAS International Conference on Humanoid Robots, 2005, pp. 80-85.
    [79] M. Ueda, K. Sekiguchi, H. Takemura, and H. Mizoguchi, ”Plantar 3-Axis Distributed Forces Sensor Based on Measurement of Silicone Rubber Deformation for Walking Analysis,” Proceedings of IEEE SENSORS 2008, Lecce, Italy, 2008, pp. 945-948.
    [80] M. Ueda, H. Uno, H. Takemura, and H. Mizoguchi, ”Development of Optical 3-Axis Distributed Forces Sensor for Walking Analysis,” Proceedings of IEEE SENSORS 2007, Atlanta, USA, 2007, pp. 403-406.
    [81] X.Q. Brown, K. Ookawa, and J.Y. Wong, “Evaluation of Polydimethylsiloxane Scaffolds with Physiologically-Relevant Elastic Moduli: Interplay of Substrate Mechanics and Surface Chemistry Effects on Vascular Smooth Muscle Cell Responde,” Biomaterials, vol. 26, 3123-3129, 2005.
    [82] K. Hosokawa, K. Hanada, and R. Maeda, “A Polydimethylsiloxane (PDMS) Deformable Diffraction Grating for Monitoring of Local Pressure in Microfluidic Devices“, Journal of Micromechanics and Microengineering, vol. 12, pp. 1-6, 2002.
    [83] H.H. Wang, P.C. Yang, W.H. Liao, and L.J. Yang, ”A New Packaging Method for Pressure Sensors by PDMS MEMS Thchnology,” Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 2006, pp. 47-51.
    [84] C.Y. Hung, Silver-Precipitation Immunoassay Using Nanoparticles as a Label, Taiwan, National Cheng Kung University Thesis, 2005.
    [85] H.W. Tung, Thermal Actuated Solid Tunable Focal Length Microlens, Taiwan, National Tsing Hua University Thesis, 2005.
    [86] H.C. Tsai, Characterization of Mechanical Properties of Thin Films Using Micromachined Structures, Taiwan, National Chung Cheng University Dissertation, 2003.
    [87] W. Fang, H.C. Tsai, and C.Y. Lo, “Determining Thermal Expansion Coefficients of Thin Films using Micromachined Cantilevers,” Sensors and Actuators A, vol. 77, pp. 217-27,1999.
    [88] H.C. Tsai and W. Fang, “Determining the Poisson’s Ratio of Thin Film Materials using Resonant Method,” Sensors and Actuators A, vol. 103, pp. 377-383, 2003.
    [89] W. Jensen, K. Yoshida, T. Malina, and U. Hofmann, ”Measurement of Intrafascicular Insertion Force of a Tungsten Needle into Peripheral Nerve,” Proceeding of 23rd Annual EMBS International Conference, Istanbul, Turkey, 2001, pp. 3108-3109.
    [90] T. Dohi and I. Shimoyama, ”A Micro Probe for Measuring Resistance against a Cell,” Proceeding of the 6th International Conference on Motion and Vibration Control, Saitama, 2002, pp. 1062-1066.
    [91] W. Jensen, U.G. Hofmann, and K. Yoshida, ”Assessment of Subdural Insertion Force of Single-Tine Microelectrodes in Rat Cerebral Cortex,” Proceeding of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 2003, pp. 2168-2171.
    [92] C.X. Chen, High Aspect Ratio Micro Multi-probe Electrode Array system, Taiwan, National Tsing Hua University Thesis, 2006.
    [93] D. J. Edell, V. V. Toi, V. M. McNeil, and L. D. Clark, "Factors Influencing the Biocompatibility of Insertable Silicon Microshafts in Cerebral Cortex," Journal of IEEE Transactions on Biomedical Engineering, vol. 39, pp. 635-643, 1992.
    [94] B. Bai, K. D. Wise, and D. J. Anderson, "A High-Yield Microassembly Structure for Three-dimensional Microelectrode Arrays," Journal of IEEE Transactions on Biomedical Engineering, vol. 47, pp. 281-289, 2000.
    [95] G. Ensell, D. J. Banjs, D. J. Ewins, W. Balachandran, and P. R. Richards, "Silicon-Based Microelectrodes for Neurophysiology Fabricated Using a Gold Metallization/Nitride Passivation System," Journal of Microelectromechanical System, vol. 5, pp. 117-121, 1996.
    [96] H. Y. Chu, T. Y. Kuo, B. Chang, S. W. Lu, C. C. Chiao, and W. Fang, "Design and Fabrication of Novel Three-dimensional Multi-Electrode Array Using SOI Wafer," Sensors and Actuators A, 2006.
    [97] P. Thiebaud, C. Beuret, N. F. Rooij, and M. K. Hep, "Microfabrication of Pt-Tip Microelectrodes," Sensors and Actuators B, vol. 70, pp. 51-56, 2000.
    [98] K.D. Wise, J.B. Angell, and A. Starr, “An Integrated-Circuit Approach to Extracellular Microelectrodes,” Proceeding of IEEE Transactions on Bio-Medical Engineering, 1970, pp.238-247.
    [99] B.W. Chang, Integration of Micro Probes and MEMS Components and Its Potential Application, Taiwan, National Tsing Hua University Thesis, 2004.
    [100] K.D. Wise, “Silicon Microsystems for Neuroscience and Neural Prostheses,” IEEE Engineering in Medicine and Biology Magazine, pp.22-29, 2005.
    [101] G. Ensell, D.J. Banks, D.J. Ewins, W. Balachandran, and P.R. Richards, “Silivon-based microelectrodes for neurophysiology fabricated using a gold metallization/nitride passivation system“, Journal of Microelectromechanical Systems, vol. 5, pp. 117-121, 1996.
    [102] P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U.G. Hofmann, “A 32-site neural recording probe fabricated by DRIE of SOI substrates“, Journal of Micromechanics and Microengineering, vol. 12, pp. 414-419, 2002.
    [103] M.H. Ho, H. Chen, F. Tseng, S.R. Yeh, and M.S.C. Lu, “CMOS Micromachined Probes by Die-Level Fabrication for Extracellular Neural Recording“, Journal of Micromechanics and Microengineering, vol. 17, pp. 283-290, 2007.
    [104] P.T. Bhatti and K.D. Wise, “A 32-Site 4-Channel High-Density Electrode Array for a Cochlear Prothesis“, Journal of Solid-State Circuits, vol. 41, pp. 2965-2973, 2006.
    [105] W. Jensen, K. Yoshida, and U.G. Hofmann, “In-Vito Implant Mechanics of Flexible, Silicon-Based ACREO Microelectrode Arrays in Rat Cerebral Cortex“, IEEE Transactions on Biomedical Engineering, vol. 53, pp. 934-940, 2006.
    [106] R. Das, D. Gandhi, S. Krishnan, L. Saggere, and P.J. Rousche, “A Benchtop System to Assess Cortical Neural Interface Micromechanics“, IEEE Transactions on Biomedical Engineering, vol. 54, pp. 1089-1096, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE