簡易檢索 / 詳目顯示

研究生: 李昌鴻
Chung-Hong Li
論文名稱: 高溫穩定性之賓主型及側鏈型非線性光學聚亞醯胺之合成及其光電特性研究
Synthesis and optical-electric properties of guest-host and side-chain NLO polyimides with high thermal stability
指導教授: 薛敬和
Ging -Ho Hsiue
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 106
中文關鍵詞: 非線性光學聚亞醯胺發色團
外文關鍵詞: nonlinear optics, polyimide, chromophore
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    非線性光學在光通訊及光學訊號處理方面扮演著相當重要之角色,而材料本身之特性則決定了元件之使用效率。隨著時間演進,多種非線性光學材料已被開發出來,其中又以有機高分子系統最具發展潛力,此乃歸咎於其具有快速應答、高度抗雷射閥值、優異之加工性以及多變之分子設計等優點,因此成為目前爭相研究之目標。
    本研究利用有機合成之方式製備出一維之發色團結構並將其摻混至高分子基材當中形成賓主型非線性光學高分子,賓主型材料內部因為並無共價鍵存在,因此其鬆弛行為要比鍵結系統來的明顯,但根據文獻報導,藉由增加發色團之旋轉體積確實可有效減緩鬆弛行為之發生,有鑑於此,在發色團結構之設計上選擇大尺寸之磺醯基作為拉電子基團,此外,在發色團之另一端導入巨大之亞醯胺結構期望提高配向偶極之安定性,在高分子基材的選用上是以聚亞醯胺作為首選,主要原因是聚亞醯胺具有高玻璃轉移溫度有助於材料熱性質之提升,以及其非結晶性可降低光損失,值得一提的是該聚亞醯胺可溶於數種非質子溶劑當中,此項優勢大幅提昇了發色團之摻混濃度,當摻混量到達27.6wt%時依然擁有良好之相容性。在材料之熱性質方面,發色團在高溫之下會產生昇華之現象,此乃因高分子的存在降低了發色團之間的作用力所致。在熱穩定性方面,因為發色團具有大尺寸因而減緩鬆弛行為之發生,T0值可到達134℃,而在80℃下之時間安定性亦可達到數千小時。此外,本研究亦針對熱退火程序之有無對材料之穩定性進行探討,結果顯示當操作溫度愈高,未經熱退火處理之試片呈現出愈快速之鬆弛機制,顯見熱退火過程對於材料性質之重要性。
    除了賓主系統以外,本研究以相似之發色團結構以及相同之聚亞醯胺高分子合成出一側鏈型非線性光學高分子,期望以共價鍵結的方式有效抑制發色團之鬆弛行為。在合成之特點上乃是利用Mitsunobu反應將兩者共同之羥基予以縮合,利用此方法之最大優點為免除了以往發色團在亞醯胺化過程中所遭受到之熱傷害。材料之d33值在1064nm之雷射作用下為53pm/V。在熱穩定性方面,其玻璃轉移溫度為210℃,且T0值亦達到203℃,顯示具有良好之適用溫度範圍。而在時間穩定性方面,在80℃下經過192小時後僅有3%之衰減,此外,為凸顯其高溫穩定性,觀察試片在180℃下經過8天後其d33值亦僅有20%之衰減,顯示具有良好之長期使用安定性。


    Abstract

    Nonlinear optics is expected to play a significant role in the fields of optical information processing, optical sensor, and telecommunications. However, characteristic of materials are the critical points. As time goes on, variety materials were developed. Among them, organic polymers are considered the most promising materials because of their rapid responses, higher laser threshold, ease of processing, and flexibility in molecule designs.
    A novel one-dimension (1-D) stilbene chromophore was synthesized by a facile synthetic approach. By doping chromophores into a soluble polyimide, a series of guest-host nonlinear optical (NLO) polymer were obtained. The guest-host system has faster relaxation than side-chain, main-chain, and network systems because there are no covalent bonds between chromophores and polymer matrices. However, numerous reseach groups try to solve this problem and one of methods is to enlarge the volume of the chromophore. Indeed, the relaxations of the guest-host systems were retarded by increasing the rotational volume of the chromophore. Based on this concept, we choose sulfonyl groups that have larger size as electron acceptors. In addition, we also attach giant imide groups to the chromophores to enhance the stability of the dipole moment.
    We choose polyimide as polymer matrices because of its excellent mechanical properties, high glass transition temperature, low optical loss and so on. Furthermore, the polyimide we synthesize in this study is soluble in a variety of aprotic solvents. This vantage results in good compatibility between chromophores and matrixes. The thermal stability of the doping systems was measured using DSC and TGA, and it was observed that chromophores sublimates before it decomposed. This is because the existence of polymers reduces the interaction between chromophore itself. We also analyze nonlinear optical properties by measuring second harmonic intensity, and it was found that T0 value reaches 134℃ and possesses thousands of hours for τ value. At last, we discuss the importance of thermal annealing process to the doped system. The result shows that the sample doesn’t undergo thermal annealing process reveals more rapid relaxation.
    In addition to guest-host system, we also synthesize a second-order NLO polyimide and expected that covalent incorporation restrict the mobility of chromophore effectively. The polyimide-based NLO material was synthesized by the Mitsunobu reaction of poly(hydroxy-imide) with hydroxy-containing NLO chromophore. The primary advantage is that we can prepare pendant NLO material in a mild environment without damage of chromophore during the imidization process at a high ring-closure temperature. A glass transition temperature of 210℃ was observed for the polyimide-based material, which possess a d33 value (53pm/V measured at 1064nm) and exhibit high thermal stability(T0=203℃). Temporal stability was also measured. The d33 value has only 3% decay at 80℃ and remains well at elevated temperatures(retains 80% at 180℃ after 8 days).

    目錄 第一章 緒論…………………………………………………………1 1-1 前言…………………………………………………….1 1-2 非線性光學簡介……………………………………….2 1-3 非線性光學原理……………………………………….2 1-4 非線性光學材料……………………………………….9 1-4-1 無機材料……………..…………………………...9 1-4-2 有機材料……………..………………………….10 1-5 非線性光學元件……………………………………...18 第二章 文獻回顧…………………………………………………..25 2-1 有機材料之微觀與巨觀非線性係數之間的關係…...25 2-2 分子結構與β值之間的關係………………………...26 2-3 賓主型及側鏈型非線性光學高分子之發展沿革...…31 2-4 研究動機……………………………………………...36 第三章 實驗………………………………………………………..39 3-1 試藥…………………………………………………...40 3-2 基本物性檢測………………………………………...40 3-3 材料合成……………………………………………...42 3-3-1 可溶性聚亞醯胺高分子之合成………………...42 3-3-2 側鏈系統發色團之合成………………………...42 3-3-3 側鏈型聚亞醯胺高分子之合成………………...46 3-3-4 賓主系統發色團之合成………………………...47 3-4 賓主型及側鏈型非線性光學高分子薄膜之製備…...52 3-5 二次非線性光學特性檢測……………………….…..53 3-5-1 高分子薄膜之配向極化…….…………………..53 3-5-2 二次非線性光學量測儀器裝置簡介…………...54 第四章 結果與討論………………………………………………..56 4-1 賓主型非線性光學高分子…………………………...56 4-1-1 賓主系統發色團之合成及化學結構鑑定……...56 4-1-2 發色團之熱性質分析…………………………...61 4-1-3 可溶性聚亞醯胺之合成及化學結構鑑定……...62 4-1-4 可溶性聚亞醯胺之熱性質分析………………...64 4-1-5 摻混系統之熱性質分析………………………...65 4-1-6 摻混系統之發色團分散型態分析……………...71 4-1-7 摻混系統之紫外/可見光光譜分析……………..74 4-1-8 折射率與膜厚之量測…………………………...78 4-1-9 最適化排列極化條件……………..………….....78 4-1-10 賓主系統之熱穩定性分析………………….….80 4-1-11 賓主系統之時間穩定性分析…………….…….83 4-1-12 材料之緩和行為分析………………….……….85 4-1-13 賓主系統之比較……………………………….87 4-2 側鏈型非線性光學高分子…………..………………..88 4-2-1 側鏈系統發色團之合成及化學結構鑑定……....88 4-2-2 側鏈型非線性光學聚亞醯胺高分子之合成及 化學結構鑑定……….………………………….91 4-2-3 側鏈系統之熱性質分析………………………...91 4-2-4 側鏈型非線性光學高分子之紫外/可見光光譜 分析……………………………………………..94 4-2-5 側鏈型非線性光學高分子薄膜折射率與膜厚 之量測…………………………………………..94 4-2-6 側鏈系統之熱穩定性分析………………….…..95 4-2-7 側鏈系統之時間穩定性及緩和行為分析….…..96 4-2-8 側鏈系統之比較………………………………...98 第五章 結論………………………………………………………100 第六章 參考文獻…………………………………………………102 List of Schemes Scheme 3-1 Synthesis of the hydroxy-containing polyimide. ….....…49 Scheme 3-2 Synthesis of 1-D side-chain NLO polyimide. …………..50 Scheme 3-3 Synthesis of guest-host system NLO chromophore. ……51 List of Tables Table 2.1 β values for various substituted benzenes. ……………….28 Table 3-1 Composition of PI and chromophore in Guest-Host NLO polymer. …………………………………………………...52 Table 4-1 Thermal decomposition temperature (Td10) of PI-1 to PI-6 and chromophore. …………….…………………………...67 Table 4-2 Order parameter of PI-1 to PI-6. …………………………..74 Table 4-3 The refractive index of side-chain NLO polymer at 633、 830 and 1160nm , respectively. …………………………...78 Table 4-4 T0 values of PI-1 to PI-6. …………….………………….....82 Table 4-5 The relaxation time (τvalue) and relaxation time distribution(βvalue) of PI-1 to PI-6 calculated by KWW equation. …………………………………………………..86 Table 4-6 Comparisons of some guest-host NLO polyimides with excellent property. ………………………………………...87 Table 4-7 The refractive index of side-chain NLO polymer at 633、 830 and 1160nm , respectively. …………….……………..95 Table 4-8 The relaxation time (τvalue) and relaxation time distribution(βvalue) of the side-chain NLO polymer. …...97 Table 4-9 Comparisons of some side-chain NLO polyimides with highly thermal and temporal stability. …………………….98 List of Figures Figure 1-1 Induced polarization for linear and nonlinear materials upon applied field. ……………………………………….4 Figure 1-2 The polarization response P(x) of a molecular in the x-axis as a function of time due to a dielectric field oscillating at E(w),and Fourier analysis of P(x) at frequencies w,2w,and 0. ……………………………... 6 Figure 1-3 Several 2nd nonlinear optical organic crystals. ………..…11 Figure 1-4 L-B multiple films. …………………….....……………..12 Figure 1-5 A procedure of self-assembly layer. …………………..…13 Figure 1-6 Sol/Gel process. ………………………..………………..18 Figure 1-7 Applications for nonlinear optical materials. ………..…..19 Figure 1-8 A typical frequency doubling waveguide configuration. ..20 Figure 1-9 A waveduide Mach-Zehnder modulator. ………….....….21 Figure 1-10 (a) 2*2 directional coupler;(b) Y-junction. …………….22 Figure 1-11 (a) A sensor protection based on self-focusing or self-defocusing theory;(b) Distributed feedback Bragg reflector. ……………………………………………..…...24 Figure 2-1 Basic structure for 2nd organic NLO chromophore. …..…27 Figure 2-2 Plot of βvalues versus the dipole moment for some monosubstituted benzene derivatives. ……………..…….27 Figure 2-3 Ground-state and lowest energy polar resonance forms for p and o substitution. Charge transfer resonance is forbidden for the m substituent. …….………..………29 Figure 2-4 Variety of NLO polymers : (a) side-chain;(b) head-to-tail type;(c) shoulder-to-shoulder type;(d) accordion type; (e)Λ-shape type. ……………………………………….35 Figure 3-1 A typical setup for corona poling. …………….. ……….53 Figure 3-2 Second harmonic coefficient measurement system. ….....55 Figure 4-1 NMR spectra of (a) GH-2 and (b) GH-6. …………..…...58 Figure 4-2 NMR spectra of (a) GH-8 and (b) GHC. ………..………59 Figure 4-3 FTIR spectrum of GHC. ………………………..……….60 Figure 4-4 (a) DSC and (b) TG analysis for GHC. …………..……..61 Figure 4-5 NMR spectrum of the soluble polyimide. ………...……..63 Figure 4-6 FTIR spectrum of the soluble polyimide. ………..……...63 Figure 4-7 DSC thermograph of the soluble polyimide. ……..……..64 Figure 4-8 TGA of the soluble polyimide. ………………..………...65 Figure 4-9 DSC thermograph of the NLO polymer PI-1 to PI-6. …..69 Figure 4-10 TGA thermograph of the NLO polymer PI-1 to PI-6. …..70 Figure 4-11 EDS images of (a) PI-1 (b) PI-2 (c) PI-3 (d) PI-4 (e) PI-5 (f) PI-6. …………………………………………………73 Figure 4-12 UV/vis spectra of (a) PI-1 (b) PI-2 (c) PI-3 (d) PI-4 (e) PI-5 (f) PI-6 (with and without poling). ………...…..77 Figure 4-13 In-situ poling dynamics of PI-3. ………………………...80 Figure 4-14 Thermal stability of PI-1 to PI-6 and compared with PI-3 without thermal annealing (frozen). ………………83 Figure 4-15 Temporal stability of PI-1 to PI-6 and compare with PI-3 without thermal annealing (frozen) at (a)80℃(b)125℃. 85 Figure 4-16 NMR spectra of (a) SC-2 and (b) SC-8. ………………...89 Figure 4-17 FTIR spectrum of SC-8. ………………………………...90 Figure 4-18 NMR spectra for the side-chain polymer (a) backbone and (b) functionalized with chromophore molecules. ….92 Figure 4-19 DSC for the side-chain NLO polymer. ………………….93 Figure 4-20 TGA for the side-chain NLO polymer. ………………….94 Figure 4-21 UV/vis spectrum of side-chain NLO polymer before and after poling. ………………………….……………..95 Figure 4-22 Thermal stability of the side-chain NLO polymer. ……...96 Figure 4-23 Temporal stability of the side-chain NLO polymer. …….97 Figure 4-24 Relationship ofτvalue andβvalue of the side-chain NLO polymer at different temperature. …………...……97

    參考文獻

    1. Prazad N., and David J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymer, John Willey and Sons, New York, 1987.
    2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 1961,7,118.
    3. K. H. Lii, and Y. Huang, Chemistry (The Chinese Chem. Soc., Taiwan China) Dec., 1993,51(4) pp.505~511.
    4. J. Zyss, D. S. Chemla,and J. F. Nicoud, J. Chem. Phys.1981,74,4800.
    5. G. Zerbi, European Materials Research Society Monograph vol.6:Organic Materials for Photonics – Science and Technology,
    North-Holland, 1993
    6. Yu T. Tao, CHEMISTRY ( THE CHINESE CHEM. SOC., TAIWAN CHINA ) Dec., 1993,51(4) pp.548~552.
    7. Geoffrey A. Lindsay and Kenneth D. Singer ACS Sympothium Series
    601Polymer for Second-Order Nonlinear Optics, American Chemical Society, Washington, DC 1995.
    8. Robert W. Boyd, Nonlinear Optics, Academic Press, 1992.
    9. S.Marturunkuakul, J.I.Chen, L.Li, R.J.Jeng, J.Kumar, and
    S.K.Tripathy, Chem. Mater. 1993,5,592.
    10. J. I. Chen, S. Marturunkuakul, L. Li, R. J. Jeng, J.Kumar, and
    S. K .Tripathy, Macromolecule 1993,26,7379.
    11. 李雅明 固態電子學 全華科技圖書股份有限公司.

    12. Donald M. Burland, Robert D. Miller, and Cecilia A. Walsh, Chem.Rev.1994, 94,31.
    13. K. Lizuka, Spriger Series in Optical Science 35:Engineering Optics
    2nd Edition, Springer-Verlag,1985.
    14. Seth R. Marder, John E. Sohn, and Galen D.Stucky, ACS Soypothium
    Series 455:Materials for Nonlinear Optics:Chemical Perspectives, ACS Washington, 1991.
    15. C. Weder, P. Neuenschwander, Ulrich W. Suter, P. Prêtre, P. Kaatz,
    and P. Gunter, Macromoleculse 1994, 27,2181.
    16. B. F. Levine, and G. F. Bethea, J. Chem. Phys. 1975, 63, 2666.
    17. J. L. Oudar, J. Chem. Phys. 1977, 67, 446.
    18. J. L. Oudar, and D.S. Chemla, Opt. Commun. 1975, 13, 164.
    19. A. Dulcic, and C. Sauteret, J. Chem. Phys. 1978, 25, 402.
    20. A. Dulcic, C. Flytzanis, C. L. Tang, D. Pepin, M. Fitzon, and
    Y.Hoppiliard, J. Chem. Phys. 1981, 74, 1559.
    21. J. D. Morley, V. J. Docherty, and D. Pugh, J. Chem. Soc. Perkin
    Trans. 1987, 2, 1357.
    22. G. Berkovic, Y. R. Shen, and M. Schadt, Mol. Cryst. Liq. Cryst. B
    1987, 150, 607.
    23. G. Meredish, J. Van Dusen, and D. Williams, Macromolecules 1982,
    15,1385.
    24. K. Singer, J. Son, and S. Lalama, Appl. Phys. Lett. 1986,49,248.
    25. K. Singer, M. Kuzyk, W. Holland, J. Son, S. Lalama, R. Comizzoli,
    H. Katz, and M. Schilling, Appl. Phys. Lett. 1988,53,1800.

    26. M. Stahelin, C. Walsh, D. Burland, R. Miller, R. Twieg, and W.
    Volksen, J. Appl. Phys. 1993,73,8471.
    27. M. Stahelin, D. Burland, M. Ebert, R. Miller, B. Smith, R. Twieg,
    W. Volksen, and C. Walsh, Appl. Phys. Lett. 1992,61,1626.
    28. C. Walsh, D. Burland, V. Lee, R. Miller, B. Smith, R. Twieg, and
    W. Volksen, Macromolecules 1993,26,3720.
    29. H. L. Hampsch, J. Yang, G. K. Wong. and J. M. Torkelson, Polym.
    Commun. 1989,30,40.
    30. J. Wu, E. Binkley, J. Kenny, R. Lytel, and A. Garito, J. Appl. Phys.
    1991,69,7366.
    31. J. Valley, J. Wu, S. Ermer, E. Binkley, J. Kenny, and R. Lytel, Appl.
    Phys. Lett. 1991,59,2213.
    32. Jen. A. K.-Y., K. Y. Wang, V. P. Rao, K. Drost, Y. M. Cai, B.Caldwell
    , R. M. Mininni, Mater. Res. Soc. Symp. Proc. 1994,328,413.
    33. J. Kenny, E. Binkley, Jen. A. K.-Y., and K. Y. Wang, Mater. Res.
    Soc. Symp. Proc. 1994.328.511.
    34. H. H. Fujimoto, S. Das, J. F. Valley, M. Stiller, L. Dries, D. Girton,
    and T. Van Eck, S. Ermer, E. Binkley, J.C. Nurse, and J. Kenny,
    Mater. Res. Soc. Symp. Proc. 1994,328,553.
    35. P. A. Cahill, C. H. Seager, M. B. Meinhardt, A. J. Beuhler, D. A.
    Wargowski, and K. Singer, Proc. SPIE 1993,2025,48.
    36. S. Ermer, J. Valley, R. Lytel, G. Lipscomb, T. Van Eck, and D. Girton
    , Appl. Phys. Lett. 1992,61,2272.
    37. J. Valley, J. Wu, S. Ermer, M. Stiller, E. Binkley, J. Kenny, G.
    Lipscomb, and R. Lytel, Appl. Phys. Lett. 1992,60,160.

    38. H. Katz, K. Singer, J. Son, C. Dirk, L. King, and H. Gordan, J. Am.
    Chem. Soc. 1987,109,6561.
    39. D. Yu, and L. Yu, Macromolecules 1994,27,6718.
    40. D. Yu, L. Yu, and G. Ali, J. Am. Chem. Soc. 1995,117,11680.
    41. T. A. Chen, Alex K. -Y. Jen, and Y. Cai, Macromolecules 1996,29,
    535.
    42. E. H. Kim, I. K. Moon, H. K. Kim, M. H. Lee, S. G. Han, M. H. Yi,
    and K. Y. Choi, Polymer 1999,40,6157.
    43. H. Saadeh, L. Wang, and L. Yu, Macromolecules 2000,33,1570.
    44. W. Leng, Y. Zhpu, Q. Xu, and J. Liu, Macromolecules 2001,34,4774.
    45. B. J. Jeon, S. W. Cha, M. Y. Jeong, T. K. Lim, and J. I.Ji. J. Mater.
    Chem. 2002,12,546.
    46. W. N. Leng, Y. M. Zhou, Q. Xu, and J. Liu, Polymer 2001,42,9235.
    47. J. D. Luo, M. Haller, H. Li, H. Z. Tang, Alex K.-Y. Jen, K. Jakka, C.
    H. Chou, and C. F. Shu, Macromolecules 2004,37,248.
    48. G. Boyd, C. Francis, J. Trend, and D. Ender, J. Opt. Soc. Am. B
    1991,8,887.
    49. L. Hampsch, J. Yand, G. K. Wang, J. M. Torkelson, Polymer
    commun. 1989,30(2),40.
    50. H. L. Hampsch, J. Yand, G. K. Wang, J. Torkelson, Macromolecules
    1988,21,526.
    51. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, and A.
    Dienes, J. Opt. Soc. Am. B 1989,6(4),733.
    52. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to spectro-
    scopy, Thomas Learning Inc., Washington 2001.
    53. W. J. Kuo, G. H. Hsiue, and R. J. Jeng, Macromolecules 2001,34,2373.
    54. Y. Sukai, M. Ueda, T. Fukuda, and H. Matsuda, J. Polym. Sci. A:
    Polym. Chem 1999,37,1321.
    55. D. Yu, A. Gharavi, and L. Yu, Macromolecules 1996,29,6139.
    56. K. Y. Wong, and A. K. –Y. Jen, J. Appl. Phys. 1994,75,1.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE