簡易檢索 / 詳目顯示

研究生: 王文琳
Wang, Wen-Lin
論文名稱: 電化學法製備熱電致冷器之Bi2Te3薄膜及奈米線之研究
Preparation of Bi2Te3 Thin Film and Nanowires for Thermoelectric Refrigeration by Electrochemical Method
指導教授: 王詠雲
Wang, Yung-Yun
萬其超
Wan, Chi-Chao
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 170
中文關鍵詞: 熱電電鍍薄膜奈米線
外文關鍵詞: thermoelectric, electrodeposition, Bi2Te3, nanowire
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bi2Te3有極高的熱電優值,並常被用作熱電致冷器的材料。在這篇報告裡將研究以電鍍的方式來製備Bi2Te3合金。當電鍍反應發生時,電解液裡的電化學活性物質之輸送現象將以石英振盪微平衡器(QCM)與旋轉電極 (RDE)加以研究。我們發現,在相同的電位極化條件下,沉積物的成份可以藉由擴散─控制的方式加以改變。QCM和RDE的實驗結果皆顯示Bi3+ 和 HTeO2+的供應對反應物成份和反應速率有很大的影響。首先,薄膜的成份主要是由電極表面反應物的濃度所決定的,並非單靠整體的濃度來改變,因此,擴散─控制的方式就提供了一個絕佳的方法來控制反應物的成份卻不會改變電極極化的情況。再者,當沉積電壓相對於飽和甘汞電位低於-0.14伏特時,其沉積的反應速率式可用下列式子表示
    r (Bi-Te) = 8.569x10^-6 x [Bi3+]^0.315 x [HTeO2+]^0.245
    另外,由於奈米線的熱電性質預期會較塊材改善許多,我們也採用陽極氧化鋁薄膜來製備Bi2Te3奈米線陣列。我們採用旋轉電極製備Bi2Te3 奈米線陣列,發現在高深寬比的氧化鋁模板之中,物質的輸送是決定反應物成份與反應速率的一個重要因素,因為在這些奈米極的孔洞內,物質的輸送完全只靠擴散。除了很慢的沉積速率之外,單靠擴散的效應也會使沉積的奈米線產生一個濃度梯度延著奈米線的底部和頂端生成。藉由電極的旋轉,可使電極表面達到一個穩定的動態平衡,物質濃度損耗的區域會從溶液的深處縮短到奈米孔的開口處,因此奈米線的成份濃度梯度會減少,奈米線的成長速率也會加快。最後,在薄模板的限制下,奈米線的成分已證實可由改變轉速來加以控制。
    最後,將量測不同組成之Bi2Te3薄膜的性質,薄膜的成分由我們提出的擴散-控制的方式來改變:在一個固定厚度擴散層內,藉由控制Bi3+/HTeO2+在此擴散層內的比例,可達到成分控制的目的。此方法所沉積的薄膜具有均勻、緻密和精準的成份以及固定的優選結構。X-ray繞射分析與掃瞄式電子顯微鏡皆顯示不同的Te含量會改變沉積物的晶格常數與晶粒大小。當沉積物的Te含量大於60%時 (Te-rich),Seebeck常數會隨Te的增加而增加。Te-rich的薄膜有較高的電荷載子濃度,但載子的移動力卻較Bi-rich的薄膜差。我們觀察到在所沉積的薄膜中,電荷載子濃度與載子的移動力有反比的關係,同樣的反比關係也存在於Seebeck常數與電導度。因此,成分最接近Bi2Te3比例的薄膜具有最佳的功率因子。
    若將電鍍沉積的Bi2Te3薄膜作熱處理,會改善薄膜的結晶度, Seebeck常數與電導度會呈現正比的關係,明顯地提升薄膜的功率因子。


    Bismuth telluride has the highest figure of merit, and is thus widely employed in thermoelectric refrigeration. In this study, the method of fabrication of Bi2Te3 alloy by electrodeposition was investigated. When electrodepositing Bi2Te3 thin film, the importance of mass transport of the electroactive species has been evaluated by quartz crystal microgravity (QCM) and rotating disc electrode (RDE). Under a constant polarized condition, the composition of the deposit was confirmed to be adjustable by the diffusion-controlled method. Both QCM and RDE studies reveal the importance of supplying Bi3+ and HTeO2+ for altering the film composition and the reaction rate. Firstly, the film composition depends mainly on the surface concentrations of the active species rather than the bulk concentrations. Thus the diffusion-controlled method contributes an effective route to determine the film composition without changing the polarized condition. Secondly, when the potential is below -0.14 V vs. SCE, the deposition rate can be expressed by the relation,
    r (Bi-Te) = 8.569x10^-6 x [Bi3+]^0.315 x [HTeO2+]^0.245
    Also, we have fabricated Bi2Te3 nanowire arrays via anodic alumina membrane, which have potential applications in thermoelectric devices due to the predicted enhanced thermoelectric properties of nanowires relative to the bulk. A rotating electrode was employed to investigate the electrodeposition of Bi2Te3 nanowires. We found that mass transport of electrolytes into alumina templates of high aspect ratio plays a significant role in determining the properties of the obtained wires. Diffusion is the rate-determining mechanism of mass transport within these nano-channels. In addition to slow growing rate, the effect of mass transport causes a slight composition variation from the bottom to the top of the wires. With a rotating electrode, the composition variation along the wires can be reduced by shortening the concentration depleted zone from the bulk electrolyte to the opening of pores. The wire growing rate can consequently be increased. Moreover, the wire compositions were confirmed to be adjustable by varying the rotation speed when a thin template was used as substrate.
    The characterization of thermoelectric properties of electrodeposited Bi2Te3 thin films was discussed in chapter 4. The film composition was varied by our proposed diffusion-controlled method, which is related to the change of Bi3+/HTeO2+ ratios in a controlled diffusion layer. A homogeneous and dense film with precise chemical composition could thus be obtained under constant electrode polarization. Meanwhile, the sole dependence of film properties on composition change of both Te-rich and Bi-rich films were investigated. Firstly, the studies of XRD and FE-SEM show that different Te contents in deposit would lead to different dimensions of unit cell and grain sizes. The Seebeck coefficient increased apparently when the Te content was over 60 at.%Te. Te-rich films had higher carrier concentration but lower mobility than Bi-rich films. Inverse relations were observed between carrier concentration and carrier mobility and between Seebeck coefficient and conductivity. Therefore, an optimal power factor of 7×10^-4 W/m K2 was realized near the stoichiometric Bi2Te3.
    If heat treatment was employed on the deposited films, the Seebeck coefficient is possible to increase with the electrical conductivity due to improved crystallinity. The power factor could significantly be increased to a value of 15×10^-4 W/m K2 by heat treatment.

    Abstract Ⅰ 中文摘要 Ⅳ Table Ⅵ Figure list Ⅸ Table list ⅩⅥ Chapter 1 Introduction and literature review 1 § 1-1 Introduction to Thermoelectrics 1 ◎ 1-1.1 Thermoelectric effects 2 ◎ 1-1.2 Thermoelectric refrigerator 5 ◎ 1-1.3 Size effects for thermoelectric properties 7 § 1-2 Bismuth Telluride Compounds 12 ◎ 1-2.1 Pure bismuth telluride 15 ◎ 1-2.2 Oxidation of the Bi2Te3 surface 17 ◎ 1-2.3 Preparation of Bi2Te3 thin film 19 ◎ 1-2.4 Electrodeposition of Bi2Te3 thin film 21 § 1-3 Templated Electrodeposition of Nanostructured Films 26 ◎ 1-3.1 Track-etch template 26 ◎ 1-3.2 Self-organizing templates 27 ◎ 1-3.3 Anodic alumina membrane 28 ◎ 1-3.4 Fabrication of nanowire array for thermoelectric nanodevices 31 ◎ 1-3.5 Bismuth telluride nanoparticles 36 § 1-4 Characterization of Thermoelectric Properties 39 ◎ 1-4.1 Electrical resistivity 39 ◎ 1-4.2 Seebeck coefficient 42 ◎ 1-4.3 Hall coefficient, carrier concentration, and carrier mobility 44 ◎ 1-4.4 Thermal conductivity 45 § 1-5 Motivation and Purpose of the Study 48 Chapter 2 Insight into the Electrodeposition of Bi2Te3 51 § 2-1 Introduction 51 § 2-2 Experimental 54 § 2-3 Results and Discussion 56 ◎ 2-3.1 Cyclic voltammograms 56 ◎ 2-3.2 Linear sweep voltammogram 59 ◎ 2-3.3 Quartz crystal microbalance 62 ◎ 2-3.4 Rotating disk electrode 69 ◎ 2-3.5 Morphology studies 72 § 2-4 Conclusions 75 Chapter 3 Electrodeposition of Bi2Te3 Nanowires into Porous Alumina Templates by Enhance Mass transport with Rotating Electrode 76 § 3-1 Introduction 76 § 3-2 Experimentals 79 § 3-3 Results and Discussion 83 ◎ 3-3.1 Mass transport theory during nanostructure electrodeposition 83 ◎ 3-3.2 Electrodeposition on a rotating electrode at constant potential 86 ◎ 3-3.3 Deposition at different cathodic potentials in stationary state 96 ◎ 3-3.4 Structures analysis 101 § 3-4 Conclusions 104 Chapter 4 Composition-dependent Characterization and Optimal Control of Electrodeposited Bi/Te Films for Thermoelectric Application 105 § 4-1 Introduction… 105 § 4-2 Experimentals 108 § 4-3 Results and Discussion 112 ◎ 4-3.1 Composition control by forced convection- hydrodynamic method 112 ◎ 4-3.2 X-ray diffraction identification 115 ◎ 4-3.3 Film morphology 118 ◎ 4-3.4 Thermoelectric properties characterizations 120 ◎ 4-3.5 The effect of heat treatment 129 § 4-4 Conclusions 138 Chapter 5 Conclusions 139 References 141 About the author 149 Appendix A-0

    1. E. J. Winder , A. B. Ellis, J. Chem. Educ. 1996, 76, 940
    2. W. B. Gosney, Principles of Refrigeration; Chap 1, Cambridge University, Cambridge, U.K., 1982
    3. S. B. Riffat, X. Ma, Applied Thermal Engineering, 2003, 23, 913
    4. A. W. Van Herwaarden, D. C. Van Duyn, B. W. Van Oudheusden, and P. M. Sarro, Sensors and Actuators, 1989, 621, A21
    5. D. M. Rowe, Miniature Thermoelectric Convertors, U.K. Patent,1988, No. 87, 14698
    6. Terry M. Tritt, Recent Trends in Thermoelectric Materials Research I, 69, ACADEMIC PRESS, San Diego, 2001
    7. D. M. Rowe, CRC Handbook of thermoelectrics, CRC Press, Boca Raton, Florida, 1995
    8. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics-Basic Principles and New Materials Developments, Springer, Germany, 2001
    9. G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling, in CRC Handbook of Thermoelectrics, Ed. D. M. Rowe, CRC Press, Boca Raton, Florida, 1995, 407
    10. L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus, Phys. Rev. B, 1996, 53, 10493
    11. L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B, 1993, 47, 16631
    12. L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B, 1993, 47, 12727
    13. G. A. Slack, The Thermal Conductivity of Nonmetallic Crystals, in Solid State Physics, Ed. H. Ehrenreich, F. Seitz, and D. Turnbull, Academic Press, New York, 1979, 34, 1
    14. A. E. Ioffe, Thermoelements and Thermoelectric Cooling, Infosearch, London, 1957
    15. M. Plötner, Thermobatterie mit galvanisch abgeschiedenen Schenkeln, Abschlussbericht, TU Dresden, 1998
    16. A. Ioffe, Semiconductors Thermoelements and Thermoelectricity Cooling, Infosearch, Lodon, 1957
    17. B. Yim, F. Rosi, Solid-State Electron., 1972, 15, 1121
    18. J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids, 1958, 5, 142
    19. J. O. Jenkins, J. A. Rayne, and R. W. Ure, Phys. Rev. B, 1972, 5, 3171
    20. V. Wagner, G. Dolling, B. M. Powell, and G. Landwehr, Phys. Satus Solidi (b), 1978, 85, 311
    21. M. R. Thuler, R. L. Benbow, and Z. Hurych, Chem. Phys., 1982, 71, 265
    22. W. Kullmann, J. Geurts, and W. Richter, Phys. Status. Solidi (b), 1984, 125, 131
    23. H. Bando, K. Koizumi, Y. Oikawa, K. Daikohara, V. A. Kulbachinskii, and H. Ozaki, J. Phys.: Condens. Matter, 2000, 12, 5607
    24. H. Okamoto, L. E. Tanner, Bi-Te binary alloy phase diagrams, American Society for Metals, Metals Park, Ohio,1986
    25. J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids, 1988, 49, 1237
    26. B. Yim, F. Rosi, Solid-State Electron., 1972, 15, 1121
    27. Harmon, J. Phys. Chem., 1957, 2, 181
    28. F. Rosi, B. Abeles, R. Jensen, J. Phys. Chem. Solid, 1959, 10, 191
    29. T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids, 1992, 53, 1121
    30. T. Ohta, T. Uesugi, T. Tokiai, N. Nosaka and T. Kajikawa, Proc. 8th Intl. Conf. Thermoelectric Energy Conversion, ed. S. Scherrer and H. Scherrer, INPL, Nancy, 1988, p. 7
    31. R. Griot, G. Brun and J. C. Tadenac, Proc. 8th Intl. Conf. Thermoelectric Energy Conversion, ed. S. Scherrer and H. Scherrer, INPL, Nancy, 1988, p. 27
    32. Y. H. Shing, Y. Chang, A. Mirshafii, L. Hayashi, S. Roberts, J. Josefourier, N. Tran, J. Vac. Sci. Technol., 1983, 171, 903
    33. E. Charles, E. Groubert, A. Boyer, J. Mater. Sci Lett., 1988, 7, 579
    34. A. Dauscher, A. Thomy, H. Scherrer, Thin Solid Film, 1996, 280, 61
    35. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N. El-Masry, J. Crys. Growth, 1997, 170, 817
    36. A. Boulouz, A. Giani, F. Pascal-Delannoy, M. Boulouz, A. Foucaran, and A. Boyer, J. Crys. Growth, 1998, 194, 336
    37. J. George and B. Pradeep, Solid State Commun., 1985, 56, 117
    38. H. Zou, D. M. Rowe and G. Min, J. Vacuum Science and Technology A, 2001, 19, 899
    39. M. Takahashi, Y. Oda, T. Ogino, S. Furuta, J. Electrochem. Soc., 1993, 140(9), 2550
    40. M. Yakahashi, Y. Katou, K. Nagata, S. Furuta, Thin Solid Films 1994, 240, 70
    41. P. Magri, C. Boulanger, J. M. Lecuire, J. Mater. Chem. 1996, 6, 773
    42. K. Tittes, Andreas Bound, W. Plieth, A. Bentien, S. Paschen, M. Plotner, H. Grafe, W.-J. Fischer, J. Solid State Electrochem 2003, 7, 714
    43. S. Michel, S. Diliberto, C. Boulanger, N. Stein, J. M. Lecuire, J. Cryst. Growth, 2005, 277, 274
    44. Y. Miyazaki, T. Kajitani, J. Cryst. Growth, 222, 542 (2001)
    45. M. S. Martìn-Gonzàlez, A. L. Prieto, R. Gronsky, T. Sands, A. M. Stacy, J. Electrochem. Soc., 2002, 149 (11), C546
    46. C. R. Martin, M. Nishizawa, K. Jirage, M. Kang, J. Phys. Chem. B, 2001, 105, 1925
    47. C. R. Martin, Acc. Chem. Res., 1995, 28, 61
    48. S. A. Sapp, D. T. Mitchell, C. R. Martin, Chem. Mater., 1999, 11, 1183
    49. B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Chem. Mater., 1997, 9, 857
    50. S. A. Miller, V. Y. Young, C. R. Martin, J. Am. Chem. Soc., 2001, 123, 12335
    51. C. J. Patrissi, C. R. Martin, J. Electrochem. Soc., 2001, 148, A1247
    52. S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, C. R. Martin, Science, 2002, 296, 2198
    53. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soederlund, C. R. Martin, J. Am. Chem. Soc., 2002, 124, 11864
    54. G. L. Hornyak, C. J. Patrissi, C. R. Martin, J. Phys. Chem. B, 1997, 101, 1548
    55. G. S. Attard, J. C. Glyde, C. G. Goltner, Nature, 1995, 378, 366
    56. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, J. H. Wang, Science, 1997, 278, 838
    57. A. H. Whitehead, J. M. Elliott, J. R. Owen, Chem. Mater.,1999, 11, 3602
    58. P. N. Bartlett, B. Gollas, S. Guerin, J. Marwan, Phys. Chem. Chem. Phys., 2002, 4, 3835
    59. P. N. Bartlett and J. Marwan, Chem. Mater., 2003, 15, 2962
    60. P. A. Nelson and J. R. Owen, J. Electrochem. Soc., 2003, 150, A1313
    61. D. Crouse, Y. H. Lo, A. E. Miller, M. Crouse, Appl. Phys. Lett., 2000, 76, 49
    62. G. Schmid, J. Mater. Chem., 2002, 12, 1231
    63. S. A. Knaack, M. Redden, and M. Onellion, Am. J. Phys., 2004, 72(7), 856
    64. F. Keller, M. S. Hunter, D. L. Robinson, J. Electrochem. Soc., 1953, 100, 411
    65. J. P. O’Sullivan, G. C. Wood, Proc. R. Soc. London, Ser. A, 1970, 317, 511
    66. M. M. Lohrengel, Mater. Sci. Eng., 1993, 17, 202
    67. S. A. Sapp, B. B. Lakshmi, C. R. Martin, Adv. Mater., 1999, 11(5), 402
    68. M. S. Sander, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, Adv. Mater., 2002, 14, 665
    69. M. S. Sander, R. Gronsky, T. Sands, and A. M. Stacy, Chem. Mater., 2003, 15, 335
    70. C. Jin, X. Xiang, C. Jia, W. Liu, W. Cai, L. Yao, and X. Li, J. Phys. Chem. B, 2004, 108, 1844
    71. W. Wang, Q. Huang, F. Jia, and J. Zhu, J. Appl. Phys., 2004, 96, 615
    72. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, Adv. Mater., 2000, 12, 520
    73. A. L. Prieto, M. S. Martìn-Gonzàlez, J. Keyani, R. Gronsky, T. Sands, A. M. Stacy, J. Am. Chem. Soc., 2003, 125, 2388
    74. M. S. Martìn-Gonzàlez, A. L. Prieto, R. Gronsky, T. Sands, A. M. Stacy, Adv. Mater., 2003, 15, 1003
    75. J. R. Lim, J. F. Whitacre, J.-P. Fleurial, C.-K. Huang, M. A. Ryan, and N. V. Myung, Adv. Mater., 2005, 17, 1488
    76. F. D. Rosi, B. Ables, R. V. Jensen, Phys. Chem. Solids, 1959, 10, 191
    77. T. J. Groshens, R. W. Gedridge, and C. Lower-Ma, Chem. Mater., 1994, 6, 727
    78. J. J. Ritter, Inorg. Chem., 1994, 33, 6419
    79. J. J. Ritter, P. Maruthamuthu, Inorg. Chem., 1995, 34, 4278
    80. Y. Deng, X. S. Zhu, G. D. Wei, J. Liu, C. W. Nan, and S. J. Zhao, J. Phys. Chem. Solids, 2002, 63, 2119
    81. A. Purkayastha, S. Kim, D. D. Gandhi, P. G. Ganesan, T. Borca-Tasciuc, and G. Ramanath, Adv. Mater., 2006, 18, 2958
    82. F. M. Smits, Bell Syst. Tech. J., 1958, 37, 711
    83. L. J. van der Pauw, Philips Res. Rep., 1958, 13, 1
    84. L. J. van der Pauw, Philips Res. Rep., 1958, 16, 187
    85. D. G. Cahill and R. O. Pohl, Phys. Rev., 1987, 835, 4067
    86. D. G. Cahill, H. E. Fischer, T. Klitsner, E. T. Swartz, and R. O. Pohl, J. Vac. Sci. Tech., 1989, A7, 1259
    87. K. M. Jeerage, D. T. Schwartz, The Electrochemical Society Interface, 2004, 13(4), 23
    88. F. A. Kroger, J. Electrochem. Soc., 1978, 125, 2028
    89. A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley & Sons, Ins., New York, 2001
    90. S. Wen, R. R. Corderman, F. Seker, A. P. Zhang, L. Denault, M. L. Blohm, J. Electrochem. Soc., 2006, 153(9), C595
    91. P. H. Rieger, Electrochemistry, Chapman & Hall, Inc., New York, 2nd edition, 1994
    92. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, Inc., New Jersey, 3rd edition, 1999
    93. Abner Brenner, Electrodeposition of Alloys, ACADEMIC PRESS, New York and Londom, Vol. I, 1963
    94. R. W. Zurilla, R. K. Sen, and E. Yeager, J. Electrochem. Soc., 1978, 125, 1103
    95. J.Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res., 1999, 32, 435
    96. H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc., 1997, 144, L127
    97. H. Masuda, K. Yada, A. Osaka, Jpn. J. Appl. Phys., 1998, 37, L1340
    98. J. F. Mϋller, U. Gösele, Appl. Phys. Lett., 1998, 72, 1173
    99. D. Crouse, Y. H. Lo, Appl. Phys. Lett., 1998, 76, 49
    100. P. Taephaisitphongse, Y. Cao, A. C. West, J. Electrochem. Soc., 2002, 148, C492
    101. 葉俊林, 萬其超, 王詠雲, 界面張力影響之孔洞電鍍模擬, 碩士論文, 國立清華大學, 臺灣, 1999
    102. K. Leyendecker, W. Bacher, W. Stark, and A. Thommes, Electrochimica Acta, 1994, 39, 1139
    103. W. L. Wang, Y. Y. Wan, and C. C. Wan, J. Electrochem. Soc., 2006, 153(6), C400-C404
    104. J. I. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, Plenum, New York, 2003, p 340
    105. W. Bacher, W. Menz, J. Mohr, IEEE Transactions on Industrial Electronics, 1995, 42, 431
    106. Romankiw, L. T. Electrochimica Acta, 1997, 42, 2985
    107. Piao, Y.; Lim, H.; Chang, J. Y.; Lee, W. Y.; Kim, H. Electrochimica Acta, 2005, 50, 2997
    108. B. Y. Yoo, C.-K. Huang, J. R. Lim, J. Herman, M. A. Ryan, J.-P. Fleurial, N. V. Myung, Electrochimica Acta, 2005, 50, 4371
    109. P. Heo, K. Hagiwara, R. Ichino, and M. Okido, J. Electrochem. Soc., 2006, 153 (4), C213
    110. H. J. Goldsmid, Electronic Refrigeration, Pion Ltd., London, 1986
    111. W. L. Wang, C. C. Wan, and Y. Y. Wan, J. Phys. Chem. B, 2006, 110, 12974
    112. G. J. Snyder, J. R. Lim, C.-K. Huang, and J.-P. Fleurial, Nat. Mater., 2003, 2, 528
    113. J. P. Fleurial, L. Gaillard, R. Triboulet, H. Scherrer, and S. Scherrer. J. Phys. Chem. Solids, 1988, 49, 1237
    114. D. M. Rowe and C. M. Bhandari, Modern Thermoelectrics, Holt, Reinhardt, and Winston, Eds., London, 1983

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE