研究生: |
王文琳 Wang, Wen-Lin |
---|---|
論文名稱: |
電化學法製備熱電致冷器之Bi2Te3薄膜及奈米線之研究 Preparation of Bi2Te3 Thin Film and Nanowires for Thermoelectric Refrigeration by Electrochemical Method |
指導教授: |
王詠雲
Wang, Yung-Yun 萬其超 Wan, Chi-Chao |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 170 |
中文關鍵詞: | 熱電 、電鍍 、薄膜 、奈米線 |
外文關鍵詞: | thermoelectric, electrodeposition, Bi2Te3, nanowire |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Bi2Te3有極高的熱電優值,並常被用作熱電致冷器的材料。在這篇報告裡將研究以電鍍的方式來製備Bi2Te3合金。當電鍍反應發生時,電解液裡的電化學活性物質之輸送現象將以石英振盪微平衡器(QCM)與旋轉電極 (RDE)加以研究。我們發現,在相同的電位極化條件下,沉積物的成份可以藉由擴散─控制的方式加以改變。QCM和RDE的實驗結果皆顯示Bi3+ 和 HTeO2+的供應對反應物成份和反應速率有很大的影響。首先,薄膜的成份主要是由電極表面反應物的濃度所決定的,並非單靠整體的濃度來改變,因此,擴散─控制的方式就提供了一個絕佳的方法來控制反應物的成份卻不會改變電極極化的情況。再者,當沉積電壓相對於飽和甘汞電位低於-0.14伏特時,其沉積的反應速率式可用下列式子表示
r (Bi-Te) = 8.569x10^-6 x [Bi3+]^0.315 x [HTeO2+]^0.245
另外,由於奈米線的熱電性質預期會較塊材改善許多,我們也採用陽極氧化鋁薄膜來製備Bi2Te3奈米線陣列。我們採用旋轉電極製備Bi2Te3 奈米線陣列,發現在高深寬比的氧化鋁模板之中,物質的輸送是決定反應物成份與反應速率的一個重要因素,因為在這些奈米極的孔洞內,物質的輸送完全只靠擴散。除了很慢的沉積速率之外,單靠擴散的效應也會使沉積的奈米線產生一個濃度梯度延著奈米線的底部和頂端生成。藉由電極的旋轉,可使電極表面達到一個穩定的動態平衡,物質濃度損耗的區域會從溶液的深處縮短到奈米孔的開口處,因此奈米線的成份濃度梯度會減少,奈米線的成長速率也會加快。最後,在薄模板的限制下,奈米線的成分已證實可由改變轉速來加以控制。
最後,將量測不同組成之Bi2Te3薄膜的性質,薄膜的成分由我們提出的擴散-控制的方式來改變:在一個固定厚度擴散層內,藉由控制Bi3+/HTeO2+在此擴散層內的比例,可達到成分控制的目的。此方法所沉積的薄膜具有均勻、緻密和精準的成份以及固定的優選結構。X-ray繞射分析與掃瞄式電子顯微鏡皆顯示不同的Te含量會改變沉積物的晶格常數與晶粒大小。當沉積物的Te含量大於60%時 (Te-rich),Seebeck常數會隨Te的增加而增加。Te-rich的薄膜有較高的電荷載子濃度,但載子的移動力卻較Bi-rich的薄膜差。我們觀察到在所沉積的薄膜中,電荷載子濃度與載子的移動力有反比的關係,同樣的反比關係也存在於Seebeck常數與電導度。因此,成分最接近Bi2Te3比例的薄膜具有最佳的功率因子。
若將電鍍沉積的Bi2Te3薄膜作熱處理,會改善薄膜的結晶度, Seebeck常數與電導度會呈現正比的關係,明顯地提升薄膜的功率因子。
Bismuth telluride has the highest figure of merit, and is thus widely employed in thermoelectric refrigeration. In this study, the method of fabrication of Bi2Te3 alloy by electrodeposition was investigated. When electrodepositing Bi2Te3 thin film, the importance of mass transport of the electroactive species has been evaluated by quartz crystal microgravity (QCM) and rotating disc electrode (RDE). Under a constant polarized condition, the composition of the deposit was confirmed to be adjustable by the diffusion-controlled method. Both QCM and RDE studies reveal the importance of supplying Bi3+ and HTeO2+ for altering the film composition and the reaction rate. Firstly, the film composition depends mainly on the surface concentrations of the active species rather than the bulk concentrations. Thus the diffusion-controlled method contributes an effective route to determine the film composition without changing the polarized condition. Secondly, when the potential is below -0.14 V vs. SCE, the deposition rate can be expressed by the relation,
r (Bi-Te) = 8.569x10^-6 x [Bi3+]^0.315 x [HTeO2+]^0.245
Also, we have fabricated Bi2Te3 nanowire arrays via anodic alumina membrane, which have potential applications in thermoelectric devices due to the predicted enhanced thermoelectric properties of nanowires relative to the bulk. A rotating electrode was employed to investigate the electrodeposition of Bi2Te3 nanowires. We found that mass transport of electrolytes into alumina templates of high aspect ratio plays a significant role in determining the properties of the obtained wires. Diffusion is the rate-determining mechanism of mass transport within these nano-channels. In addition to slow growing rate, the effect of mass transport causes a slight composition variation from the bottom to the top of the wires. With a rotating electrode, the composition variation along the wires can be reduced by shortening the concentration depleted zone from the bulk electrolyte to the opening of pores. The wire growing rate can consequently be increased. Moreover, the wire compositions were confirmed to be adjustable by varying the rotation speed when a thin template was used as substrate.
The characterization of thermoelectric properties of electrodeposited Bi2Te3 thin films was discussed in chapter 4. The film composition was varied by our proposed diffusion-controlled method, which is related to the change of Bi3+/HTeO2+ ratios in a controlled diffusion layer. A homogeneous and dense film with precise chemical composition could thus be obtained under constant electrode polarization. Meanwhile, the sole dependence of film properties on composition change of both Te-rich and Bi-rich films were investigated. Firstly, the studies of XRD and FE-SEM show that different Te contents in deposit would lead to different dimensions of unit cell and grain sizes. The Seebeck coefficient increased apparently when the Te content was over 60 at.%Te. Te-rich films had higher carrier concentration but lower mobility than Bi-rich films. Inverse relations were observed between carrier concentration and carrier mobility and between Seebeck coefficient and conductivity. Therefore, an optimal power factor of 7×10^-4 W/m K2 was realized near the stoichiometric Bi2Te3.
If heat treatment was employed on the deposited films, the Seebeck coefficient is possible to increase with the electrical conductivity due to improved crystallinity. The power factor could significantly be increased to a value of 15×10^-4 W/m K2 by heat treatment.
1. E. J. Winder , A. B. Ellis, J. Chem. Educ. 1996, 76, 940
2. W. B. Gosney, Principles of Refrigeration; Chap 1, Cambridge University, Cambridge, U.K., 1982
3. S. B. Riffat, X. Ma, Applied Thermal Engineering, 2003, 23, 913
4. A. W. Van Herwaarden, D. C. Van Duyn, B. W. Van Oudheusden, and P. M. Sarro, Sensors and Actuators, 1989, 621, A21
5. D. M. Rowe, Miniature Thermoelectric Convertors, U.K. Patent,1988, No. 87, 14698
6. Terry M. Tritt, Recent Trends in Thermoelectric Materials Research I, 69, ACADEMIC PRESS, San Diego, 2001
7. D. M. Rowe, CRC Handbook of thermoelectrics, CRC Press, Boca Raton, Florida, 1995
8. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics-Basic Principles and New Materials Developments, Springer, Germany, 2001
9. G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling, in CRC Handbook of Thermoelectrics, Ed. D. M. Rowe, CRC Press, Boca Raton, Florida, 1995, 407
10. L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus, Phys. Rev. B, 1996, 53, 10493
11. L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B, 1993, 47, 16631
12. L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B, 1993, 47, 12727
13. G. A. Slack, The Thermal Conductivity of Nonmetallic Crystals, in Solid State Physics, Ed. H. Ehrenreich, F. Seitz, and D. Turnbull, Academic Press, New York, 1979, 34, 1
14. A. E. Ioffe, Thermoelements and Thermoelectric Cooling, Infosearch, London, 1957
15. M. Plötner, Thermobatterie mit galvanisch abgeschiedenen Schenkeln, Abschlussbericht, TU Dresden, 1998
16. A. Ioffe, Semiconductors Thermoelements and Thermoelectricity Cooling, Infosearch, Lodon, 1957
17. B. Yim, F. Rosi, Solid-State Electron., 1972, 15, 1121
18. J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids, 1958, 5, 142
19. J. O. Jenkins, J. A. Rayne, and R. W. Ure, Phys. Rev. B, 1972, 5, 3171
20. V. Wagner, G. Dolling, B. M. Powell, and G. Landwehr, Phys. Satus Solidi (b), 1978, 85, 311
21. M. R. Thuler, R. L. Benbow, and Z. Hurych, Chem. Phys., 1982, 71, 265
22. W. Kullmann, J. Geurts, and W. Richter, Phys. Status. Solidi (b), 1984, 125, 131
23. H. Bando, K. Koizumi, Y. Oikawa, K. Daikohara, V. A. Kulbachinskii, and H. Ozaki, J. Phys.: Condens. Matter, 2000, 12, 5607
24. H. Okamoto, L. E. Tanner, Bi-Te binary alloy phase diagrams, American Society for Metals, Metals Park, Ohio,1986
25. J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids, 1988, 49, 1237
26. B. Yim, F. Rosi, Solid-State Electron., 1972, 15, 1121
27. Harmon, J. Phys. Chem., 1957, 2, 181
28. F. Rosi, B. Abeles, R. Jensen, J. Phys. Chem. Solid, 1959, 10, 191
29. T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids, 1992, 53, 1121
30. T. Ohta, T. Uesugi, T. Tokiai, N. Nosaka and T. Kajikawa, Proc. 8th Intl. Conf. Thermoelectric Energy Conversion, ed. S. Scherrer and H. Scherrer, INPL, Nancy, 1988, p. 7
31. R. Griot, G. Brun and J. C. Tadenac, Proc. 8th Intl. Conf. Thermoelectric Energy Conversion, ed. S. Scherrer and H. Scherrer, INPL, Nancy, 1988, p. 27
32. Y. H. Shing, Y. Chang, A. Mirshafii, L. Hayashi, S. Roberts, J. Josefourier, N. Tran, J. Vac. Sci. Technol., 1983, 171, 903
33. E. Charles, E. Groubert, A. Boyer, J. Mater. Sci Lett., 1988, 7, 579
34. A. Dauscher, A. Thomy, H. Scherrer, Thin Solid Film, 1996, 280, 61
35. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N. El-Masry, J. Crys. Growth, 1997, 170, 817
36. A. Boulouz, A. Giani, F. Pascal-Delannoy, M. Boulouz, A. Foucaran, and A. Boyer, J. Crys. Growth, 1998, 194, 336
37. J. George and B. Pradeep, Solid State Commun., 1985, 56, 117
38. H. Zou, D. M. Rowe and G. Min, J. Vacuum Science and Technology A, 2001, 19, 899
39. M. Takahashi, Y. Oda, T. Ogino, S. Furuta, J. Electrochem. Soc., 1993, 140(9), 2550
40. M. Yakahashi, Y. Katou, K. Nagata, S. Furuta, Thin Solid Films 1994, 240, 70
41. P. Magri, C. Boulanger, J. M. Lecuire, J. Mater. Chem. 1996, 6, 773
42. K. Tittes, Andreas Bound, W. Plieth, A. Bentien, S. Paschen, M. Plotner, H. Grafe, W.-J. Fischer, J. Solid State Electrochem 2003, 7, 714
43. S. Michel, S. Diliberto, C. Boulanger, N. Stein, J. M. Lecuire, J. Cryst. Growth, 2005, 277, 274
44. Y. Miyazaki, T. Kajitani, J. Cryst. Growth, 222, 542 (2001)
45. M. S. Martìn-Gonzàlez, A. L. Prieto, R. Gronsky, T. Sands, A. M. Stacy, J. Electrochem. Soc., 2002, 149 (11), C546
46. C. R. Martin, M. Nishizawa, K. Jirage, M. Kang, J. Phys. Chem. B, 2001, 105, 1925
47. C. R. Martin, Acc. Chem. Res., 1995, 28, 61
48. S. A. Sapp, D. T. Mitchell, C. R. Martin, Chem. Mater., 1999, 11, 1183
49. B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Chem. Mater., 1997, 9, 857
50. S. A. Miller, V. Y. Young, C. R. Martin, J. Am. Chem. Soc., 2001, 123, 12335
51. C. J. Patrissi, C. R. Martin, J. Electrochem. Soc., 2001, 148, A1247
52. S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, C. R. Martin, Science, 2002, 296, 2198
53. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soederlund, C. R. Martin, J. Am. Chem. Soc., 2002, 124, 11864
54. G. L. Hornyak, C. J. Patrissi, C. R. Martin, J. Phys. Chem. B, 1997, 101, 1548
55. G. S. Attard, J. C. Glyde, C. G. Goltner, Nature, 1995, 378, 366
56. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, J. H. Wang, Science, 1997, 278, 838
57. A. H. Whitehead, J. M. Elliott, J. R. Owen, Chem. Mater.,1999, 11, 3602
58. P. N. Bartlett, B. Gollas, S. Guerin, J. Marwan, Phys. Chem. Chem. Phys., 2002, 4, 3835
59. P. N. Bartlett and J. Marwan, Chem. Mater., 2003, 15, 2962
60. P. A. Nelson and J. R. Owen, J. Electrochem. Soc., 2003, 150, A1313
61. D. Crouse, Y. H. Lo, A. E. Miller, M. Crouse, Appl. Phys. Lett., 2000, 76, 49
62. G. Schmid, J. Mater. Chem., 2002, 12, 1231
63. S. A. Knaack, M. Redden, and M. Onellion, Am. J. Phys., 2004, 72(7), 856
64. F. Keller, M. S. Hunter, D. L. Robinson, J. Electrochem. Soc., 1953, 100, 411
65. J. P. O’Sullivan, G. C. Wood, Proc. R. Soc. London, Ser. A, 1970, 317, 511
66. M. M. Lohrengel, Mater. Sci. Eng., 1993, 17, 202
67. S. A. Sapp, B. B. Lakshmi, C. R. Martin, Adv. Mater., 1999, 11(5), 402
68. M. S. Sander, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, Adv. Mater., 2002, 14, 665
69. M. S. Sander, R. Gronsky, T. Sands, and A. M. Stacy, Chem. Mater., 2003, 15, 335
70. C. Jin, X. Xiang, C. Jia, W. Liu, W. Cai, L. Yao, and X. Li, J. Phys. Chem. B, 2004, 108, 1844
71. W. Wang, Q. Huang, F. Jia, and J. Zhu, J. Appl. Phys., 2004, 96, 615
72. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, Adv. Mater., 2000, 12, 520
73. A. L. Prieto, M. S. Martìn-Gonzàlez, J. Keyani, R. Gronsky, T. Sands, A. M. Stacy, J. Am. Chem. Soc., 2003, 125, 2388
74. M. S. Martìn-Gonzàlez, A. L. Prieto, R. Gronsky, T. Sands, A. M. Stacy, Adv. Mater., 2003, 15, 1003
75. J. R. Lim, J. F. Whitacre, J.-P. Fleurial, C.-K. Huang, M. A. Ryan, and N. V. Myung, Adv. Mater., 2005, 17, 1488
76. F. D. Rosi, B. Ables, R. V. Jensen, Phys. Chem. Solids, 1959, 10, 191
77. T. J. Groshens, R. W. Gedridge, and C. Lower-Ma, Chem. Mater., 1994, 6, 727
78. J. J. Ritter, Inorg. Chem., 1994, 33, 6419
79. J. J. Ritter, P. Maruthamuthu, Inorg. Chem., 1995, 34, 4278
80. Y. Deng, X. S. Zhu, G. D. Wei, J. Liu, C. W. Nan, and S. J. Zhao, J. Phys. Chem. Solids, 2002, 63, 2119
81. A. Purkayastha, S. Kim, D. D. Gandhi, P. G. Ganesan, T. Borca-Tasciuc, and G. Ramanath, Adv. Mater., 2006, 18, 2958
82. F. M. Smits, Bell Syst. Tech. J., 1958, 37, 711
83. L. J. van der Pauw, Philips Res. Rep., 1958, 13, 1
84. L. J. van der Pauw, Philips Res. Rep., 1958, 16, 187
85. D. G. Cahill and R. O. Pohl, Phys. Rev., 1987, 835, 4067
86. D. G. Cahill, H. E. Fischer, T. Klitsner, E. T. Swartz, and R. O. Pohl, J. Vac. Sci. Tech., 1989, A7, 1259
87. K. M. Jeerage, D. T. Schwartz, The Electrochemical Society Interface, 2004, 13(4), 23
88. F. A. Kroger, J. Electrochem. Soc., 1978, 125, 2028
89. A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley & Sons, Ins., New York, 2001
90. S. Wen, R. R. Corderman, F. Seker, A. P. Zhang, L. Denault, M. L. Blohm, J. Electrochem. Soc., 2006, 153(9), C595
91. P. H. Rieger, Electrochemistry, Chapman & Hall, Inc., New York, 2nd edition, 1994
92. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, Inc., New Jersey, 3rd edition, 1999
93. Abner Brenner, Electrodeposition of Alloys, ACADEMIC PRESS, New York and Londom, Vol. I, 1963
94. R. W. Zurilla, R. K. Sen, and E. Yeager, J. Electrochem. Soc., 1978, 125, 1103
95. J.Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res., 1999, 32, 435
96. H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc., 1997, 144, L127
97. H. Masuda, K. Yada, A. Osaka, Jpn. J. Appl. Phys., 1998, 37, L1340
98. J. F. Mϋller, U. Gösele, Appl. Phys. Lett., 1998, 72, 1173
99. D. Crouse, Y. H. Lo, Appl. Phys. Lett., 1998, 76, 49
100. P. Taephaisitphongse, Y. Cao, A. C. West, J. Electrochem. Soc., 2002, 148, C492
101. 葉俊林, 萬其超, 王詠雲, 界面張力影響之孔洞電鍍模擬, 碩士論文, 國立清華大學, 臺灣, 1999
102. K. Leyendecker, W. Bacher, W. Stark, and A. Thommes, Electrochimica Acta, 1994, 39, 1139
103. W. L. Wang, Y. Y. Wan, and C. C. Wan, J. Electrochem. Soc., 2006, 153(6), C400-C404
104. J. I. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, Plenum, New York, 2003, p 340
105. W. Bacher, W. Menz, J. Mohr, IEEE Transactions on Industrial Electronics, 1995, 42, 431
106. Romankiw, L. T. Electrochimica Acta, 1997, 42, 2985
107. Piao, Y.; Lim, H.; Chang, J. Y.; Lee, W. Y.; Kim, H. Electrochimica Acta, 2005, 50, 2997
108. B. Y. Yoo, C.-K. Huang, J. R. Lim, J. Herman, M. A. Ryan, J.-P. Fleurial, N. V. Myung, Electrochimica Acta, 2005, 50, 4371
109. P. Heo, K. Hagiwara, R. Ichino, and M. Okido, J. Electrochem. Soc., 2006, 153 (4), C213
110. H. J. Goldsmid, Electronic Refrigeration, Pion Ltd., London, 1986
111. W. L. Wang, C. C. Wan, and Y. Y. Wan, J. Phys. Chem. B, 2006, 110, 12974
112. G. J. Snyder, J. R. Lim, C.-K. Huang, and J.-P. Fleurial, Nat. Mater., 2003, 2, 528
113. J. P. Fleurial, L. Gaillard, R. Triboulet, H. Scherrer, and S. Scherrer. J. Phys. Chem. Solids, 1988, 49, 1237
114. D. M. Rowe and C. M. Bhandari, Modern Thermoelectrics, Holt, Reinhardt, and Winston, Eds., London, 1983