研究生: |
李育姍 Lee, Yu-Shan |
---|---|
論文名稱: |
應用非均等錯誤保護類循環低密度偶校碼之混合式自動重傳請求 Hybrid ARQ with UEP QC-LDPC Codes |
指導教授: |
趙啟超
Chao, Chi-Chao |
口試委員: |
林茂昭
Lin, Mao-Chao 楊谷章 Yang, Guu-Chang 王忠炫 Wang, Chung-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 混合式自動重傳請求 、自動重傳請求 、低密度偶校碼 、類循環低密度偶校碼 、非均等錯誤保護類循環低密度偶校碼 |
外文關鍵詞: | Hybrid automatic repeat request, IR-HARQ, QC-LDPC code, UEP QC-LDPC code, rate compatible |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
類循環低密度偶校碼(quasi-cyclic low-density parity-check codes)是一種具代數結構的低密度偶校碼,在硬體實現及分析上的複雜度皆可大幅降低。有非均等錯誤保護(unequal error protection)的類循環低密度偶校碼,可以依據其偶校矩陣將其碼字元(codeword bit)分成多個部分,各自有著不同的改錯能力,藉此加強保護較重要的訊息。
混合式自動重傳請求(hybrid automatic repeat request)機制常被使用於變動頻繁的通道,藉此減少重傳的次數。而其中一種增量冗餘(incremental redundancy)的混合式自動重傳請求機制是透過適應通道狀況決定要額外多傳冗餘字元的數量來增加流通量(throughput)。在增量冗餘的混合式自動重傳請求機制中,通常是使用有相容碼率能力(rate-compatibility)的錯誤更正碼。
在此篇論文中,我們使用非均等錯誤保護類循環低密度偶校碼,並且採用穿刺(puncturing)的技術來適應所需的碼率。我們提出了一個混合式自動重傳請求機制是應用非均等錯誤保護類循環低密度偶校碼來進行錯誤偵測及更正。電腦模擬結果中可以發現,應用非均等錯誤保護類循環低密度偶校碼之混合式自動重傳請求機制相較於傳統應用有相容碼率能力的低密度偶校碼,在低訊噪比(signal-to-noise ratio)區域有較好的表現。我們也有提出方法去分析所設計機制的流通量。
Quasi-cyclic low-density parity-check (QC-LDPC) codes with structured parity-check matrices have attracted considerable research interest as low-complexity hardware can be implemented for encoding and decoding efficiently. QC-LDPC codes with unequal error protection (UEP) properties have different levels of error-correcting capabilities for each level of subcodewords.
Hybrid automatic repeat request (HARQ) schemes are usually used in applications with fluctuating channel conditions within a certain range of signal-to-noise ratios (SNRs) to reduce the number of retransmissions. The throughput efficiency of the incremental redundancy HARQ (IR-HARQ) scheme can be increased by adapting its additional redundancy to different channel conditions. Rate-compatible (RC) codes have many applications in packet data transmission where adaptive coding and UEP are required. Hence, RC codes are commonly employed in IR-HARQ schemes.
Since UEP QC-LDPC codes already have UEP properties, we adopt puncturing techniques to adapt UEP QC-LDPC codes to the required coding rates. We propose a modified IR-HARQ scheme that uses UEP QC-LDPC codes for error correction and detection. Simulation results show that the proposed scheme with UEP QC-LDPC codes have advantages over those using conventional RC-LDPC codes at low SNR regimes. Furthermore, the cor-responding throughput performance is also analyzed.
[1]R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.
[2]J. Campello, D. S. Modha, and S. Rajagopalan, “Designing LDPC codes using bit- filling,” in Proc. IEEE Int. Conf. Commun., Helsinki, Finland, Jun. 2001, pp. 55–59.
[3]J. Campello and D. S. Modha, “Extended bit-filling and LDPC code design,” in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, Nov. 2001, pp. 985–989.
[4]X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive edge-growth Tanner graphs,” in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, Nov. 2001, pp. 995–1001.
[5]R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, Jr., “LDPC block and convolutional codes based on circulant matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.
[6]J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Con- struction, low error-floor, large girth and a reduced-complexity decoding scheme,” IEEE Trans. Commun., vol. 62, no. 8, pp. 2626–2637, Aug. 2014.
[7]M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788–1793, Aug. 2004.
[8]C.-J. Wu, “New constructions of equal error protection and unequal error protection QC-LDPC codes,” Ph.D. dissertation, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan, R.O.C., 2016.
[9]C.-J. Wu, C.-H. Wang, and C.-C. Chao, “UEP constructions of quasi-cyclic low-density parity-check codes via masking,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6271–6294, Oct. 2017.
[10]S. Lin and D. J. Costello, Jr., Error Control Coding, Second Edition. Upper Saddle River, NJ: Prentice-Hall, Inc., 2004.
[11]S. Lin and P. Yu, “A hybrid ARQ scheme with parity retransmission for error control of satellite channels,” IEEE Trans. Commun., vol. 30, no. 7, pp. 1701–1719, Aug. 1982.
[12]J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their applications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389–400, Apr. 1988.
[13]J. Cain, G. Clark, and J. Geist, “Punctured convolutional codes of rate (n-1)/n and simplified maximum likelihood decoding,” IEEE Trans. Inf. Theory, vol. 25, no. 1, pp. 97–100, Jan. 1979.
[14]D. Rowitch and L. Milstein, “On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes,” IEEE Trans. Commun., vol. 48, no. 6, pp. 948–959, Jul. 2000.
[15]R. Mantha and F. R. Kschischang, “A capacity-approaching hybrid ARQ scheme using turbo codes,” in Proc. IEEE Global Telecommun. Conf., Rio de Janeireo, Brazil, Dec. 1999, pp. 2341–2345.
[16]J. Li and K. Narayanan, “Rate-compatible low density parity check codes for capacity- approaching ARQ scheme in packet data communications,” in Proc. Int. Conf. Commun. Internet Inf. Technol., St. Thomas, US Virgin Islands, Nov. 2002, pp. 201–206.
[17]M. R. Yazdani and A. H. Banihashemi, “On construction of rate-compatible low-density parity-check codes,” IEEE Commun. Lett., vol. 8, no. 3, pp. 159–161, Mar. 2004.
[18]F. Zesong, Z. Miao, and K. Jingming, “A type-II hybrid ARQ scheme based on rate- compatible LDPC code,” in Proc. Int. Conf. Commun. Circuits Systems, Guilin, China, Jun. 2006, pp. 879–882.
[19]J. Ha, J. Kim, D. Klinc, and S. W. McLaughlin, “Rate-compatible punctured low-density parity-check codes with short block lengths,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 728–738, Feb. 2006.
[20]M. El-Khamy, J. Hou, and N. Bhushan, “Design of rate-compatible structured LDPC codes for hybrid ARQ applications,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 965–973, Aug. 2009.
[21]R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.
[22]W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge, UK: Cambridge University Press, 2009.
[23]J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, “Construction of regular and irregular LDPC codes: Geometry decomposition and masking,” IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 121–134, Jan. 2007.
[24]J.-J. Wu, “Decoding scheduling schemes for UEP QC-LDPC codes,” M.S. thesis, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan, R.O.C., 2017.
[25]J.-J. Wu, C.-H. Wang, and C.-C. Chao, “Decoding scheduling for unequal error protection quasi-cyclic low-density parity-check codes,” in Proc. Int. Workshop. Signal Design Applicat. Commun., Dongguan, China, Oct. 2019, pp. 1–5.
[26]F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.
[27]S. Lin, D. J. Costello, Jr., and M. J. Miller, “Automatic-repeat-request error-control schemes,” IEEE Commun. Mag., vol. 22, no. 12, pp. 5–17, Dec. 1984.
[28]D. Chase, “Code combining - a maximum-likelihood decoding approach for combining an arbitrary number of noisy packets,” IEEE Trans. Commun., vol. 33, no. 5, pp. 385– 393, May 1985.
[29]D. Mandelbaum, “An adaptive-feedback coding scheme using incremental redundancy,” IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 388–389, May 1974.
[30]J. Metzner, “Improvements in block-retransmission schemes,” IEEE Trans. Commun., vol. 27, no. 2, pp. 524–532, Feb. 1979.
[31]J.-F. Cheng, “On the coding gain of incremental redundancy over chase combining,” in Proc. IEEE Global Telecommun. Conf., San Francisco, CA, Dec. 2003, pp. 107–112.
[32]M. Karimi and A. H. Banihashemi, “Message-passing algorithms for counting short cycles in a graph,” IEEE Trans. Commun., vol. 61, no. 2, pp. 485–495, Feb. 2013.
[33]X.-Y. Hu, M. P. C. Fossorier, and E. Eleftheriou, “On the computation of the minimum distance of low-density parity-check codes,” in Proc. IEEE Int. Conf. Commun., Paris, France, Jun. 2004, pp. 767–771.
[34]Y. Xiao and K. Kim, “Searching the minimum distances of LDPC codes,” in Proc. IET Int. Conf. Wireless, Mobile Multimedia Networks, Beijing, China, Oct. 2008, pp. 211–214.