簡易檢索 / 詳目顯示

研究生: 張軒國
Chang, Hsuan-Kuo
論文名稱: 利用多維核磁共振技術對人類Interleukin-1α水溶液結構之探討
Study on the structure of human Interleukin-1α by using multi-dimension NMR technology
指導教授: 余靖
Yu, Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 核磁共振水溶液結構
外文關鍵詞: Interleukin-1α, structure, NMR
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IL-1α(介白素,Interleukin-1α)為一具有多樣生物活性的訊息傳遞分子,其經由非典型路徑分泌出細胞後,會與細胞表面的受器作用並引發訊息傳遞。如引起發燒、刺激肝臟製造急性蛋白、增大淋巴細胞的回應、誘發關節退化、增加骨髓細胞數目等等;同時亦會誘導數種腦丘下部和腦垂體多肽的釋放及胰島素的轉錄。且IL-1α也是造成類風濕性關節炎與退化性關節炎的主因之一,其在人體中扮演了重要的角色。
    本篇論文中,主要利用多維核磁共振技術解出IL-1α在水溶液中的結構。首先使用各種三維核磁共振實驗如HNCA、HN(CO)CA、HNCO來得到IL-1α蛋白分子的骨架資訊;CBCA(CO)NH、CBCANH、HBHA(CO)NH、HCCH-TOCSY來得到IL-1α蛋白分子的支鏈資訊,以這些結果判定95% 胺基酸中的1H、15N和13C的化學位移。進行結構計算時,先由15N & 13C-edited NOESY來得到IL-1α蛋白分子內所有NOE的資訊,並且配合雙面角、氫鍵、CSI等限制條件,接著使用Aria/CNS軟體來解出IL-1α蛋白分子在水溶液中的結構,以作為研究IL-1α與S100A13蛋白複合結構之基礎,此複合結構可幫助我們更深入的了解IL-1α的non-classical pathway。


    Interleukin-1α is one of the members of signaling transduction molecules which serves diverse biological functions. It is secreted by the cell through the non-classical pathway and interacts with the receptor on the cell surface to trigger the signal transduction cascade. It could induce fever, stimulate hepatic acute-phase protein production, augment lymphocyte responses, induce degenerative changes in joints and increase the numbers of bone marrow cells etc. It is also able to induce the release of several kinds of hypothalamic and pituitary peptides and to enhance the transcription of insulin. IL-1α thus plays an important role in human body and is the primary element to cause rheumatic arthritis and degeneration arthritis.
    In the thesis, the solution structure of IL-1α was solved using multi-dimensional nuclear magnetic resonance technology. First, the backbone information of the IL-1α was determined from a variety of 3D NMR experiments such as HNCA, HN(CO)CA, and HNCO, followed by other experiments such as CBCA(CO)NH, CBCANH, HBHA(CO)NH, and HCCH-TOCSY to determine the side-chain constraints of IL-1α. The 1H, 15N, 13C chemical shifts of 95% amino acid of IL-1α were successfully assigned.
    The solution structure of IL-1α was calculated by Aria/CNS software program using the NOE constraints obtained from 15N & 13C-edited NOESY experiments. The other constraints such as dihedral angle, hydrogen bond, chemical shift index were also used for structure calculation etc. The 3D solution structure of IL-1α determined in the present study can help us to understand the non-classical pathway of IL-1α.

    Abstract..................................................1 摘要......................................................3 第一章 前言..............................................4 1.1 Human Interleukin-1 alpha(IL-1α)之特性................4 1.2 Human Interleukin-1 alpha(IL-1α)之結構................5 1.3 Human Interleukin-1 alpha(IL-1α)的分泌路徑............6 1.4 Human Interleukin-1 alpha(IL-1α)在訊息傳遞中所扮演的角色........................................................9 1.5 Human Interleukin-1 alpha(IL-1α)在病理與生理的重要性.13 1.6 生物核磁共振技術的介紹...............................16 1.6.1 蛋白質分子的NMR光譜循序判定(Sequential assignment).17 1.6.1.1 骨架(Backbone)循序判定...........................17 1.6.1.2 支鏈(Sidechain)循序判定..........................18 1.7 限制條件的找尋.......................................20 1.7.1距離限制條件(NOE distance constraints) .............20 1.7.2 雙面角限制條件(Dihedral angle constraints) ........21 1.7.3 氫鍵限制條件(Hydrogen bonding constraints) ........21 1.8 結構計算.............................................22 第二章 材料與方法........................................24 2.1 Human IL-1α的取得....................................24 2.1.1蛋白質之表現........................................24 2.1.2 IL-1α蛋白質的純化..................................26 2.1.3 IL-1α蛋白質的濃縮與去鹽............................28 2.1.4 IL-1α蛋白質的濃度測定..............................29 2.2 IL-1α蛋白質的基本性質鑑定............................30 2.2.1 IL-1α蛋白質質量鑑定................................30 2.2.2 IL-1α蛋白質的螢光放射光譜(Fluoresence spectrum)....31 2.2.3 IL-1α蛋白質的圓二色光譜(Circular dichroism) .......33 2.3 IL-1α蛋白質的同位素標定實驗..........................34 2.4 IL-1α蛋白質的反選擇標定實驗..........................36 2.5 IL-1α蛋白質的氫氘交換實驗............................38 2.6 IL-1α蛋白質的三維核磁共振實驗........................39 第三章 結果與討論........................................41 3.1 IL-1α蛋白質的表現及純化..............................41 3.1.1異丙基硫化半乳糖(IPTG)對大腸桿菌的誘導作用..........41 3.1.2 從大腸桿菌中取得IL-1α蛋白質........................42 3.1.3 IL-1α蛋白質的純化與分離............................43 3.1.4 IL-1α蛋白質的濃縮與去鹽............................44 3.2 IL-1α蛋白質之基本性質鑑定............................46 3.2.1 IL-1α蛋白質的分子量鑑定............................46 3.2.2 IL-1α蛋白質的螢光光譜..............................47 3.2.3 IL-1α蛋白質的圓二色光譜............................48 3.3 IL-1α蛋白質的同位素標定實驗..........................49 3.4 IL-1α蛋白質的反選擇性標定實驗........................50 3.5 IL-1α蛋白質的氫氘交換實驗............................51 3.6 IL-1α蛋白質的分子的核磁共振實驗以及光譜的循序判定....52 3.7 雙面角限制條件.......................................58 3.8 二級結構的預測.......................................59 3.9結構計算..............................................60 3.10 IL-1α結構計算後的統計表.............................66 第四章 結論..............................................67 參考文獻.................................................68 附錄一:反選擇性標定實驗.................................71 附錄二:HNCA和HN(CO)CA的Strip............................73 附錄三:IL-1α化學位移表..................................82

    (1)Dinarello, C. A., (1988) Biology of interleukin 1. FASB J. 2:108-115
    (2)Adrew J. P.,Steven E. H. (2009) Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine & Growth Factor Reviews 20:43-59
    (3)Furutani, Y., Notake, M., et al., (1986) Complete nucleotide sequence of the gene for human interleukin 1 alpha . Nucleic Acids Research 14:3167-79 ,
    (4)Dinarello, C. A., (1994) The interleuldn-1 family: 10 years of discovery. FASB J. 8:1314-1325
    (5)Mandrup-poulsen, T., Bendtzen, K., et al., (1986) Affinity-purified human interleukin-1 is cytotoxic to isolated islets of Langerhans. Diabetologia 29:63-67
    (6)Sacerdote, P., Bianchi, M., et al., (1994) Intracerebroventricular interleukin-1 alpha increases immunocyte beta- endorphin concentrations in the rat: involvement of corticotropin- releasing hormone, catecholamines, and serotonin. Endocrinology 135:1346-1352
    (7)Graves, B. J., Hatada, M. H., et al., (1990) Structure of Interleukin 1a at 2.7-A Resolution. Biochemistry 29:2679-2684
    (8)Veerapandian, B., (1992) Structure and function of interleukin-1, based on crystallographicand modeling studies. Biophys J. 62:112–115
    (9)Blobel, G., (2000) Protein targeting (Nobel lecture). Chembiochem 1:86-102
    (10)Nickel, W., (2003) The mystery of nonclassical protein secretion A current view on cargo proteins and potential export routes. Eur. J. Biochem. 270:2109-2119
    (11)Prudovsky, I., Mandinova, A., et al., (2003) The non-classical export routes: FGF1 and IL-1a point the way. Journal of Cell Science 116:4871-4881
    (12)Frazier, T. S., Stuartl, L. B., et al., (1993) The 31-kDa precursor of interleukin la is myristoylated on specificlysines within the 16-kDa N-terminal propiece. Proc. Natl. Acad. Sci. USA 90:7245-7249,
    (13)Watanabe, N. ;Kobayashi, Y., (1994) Selective release of a processed form of interleukin-1α. Cytokine 6:597-601
    (14)Andrei, C., Dazzi, C., (1999) The Secretory Route of the Leaderless Protein Interleukin 1β Involves Exocytosis of Endolysosome-related Vesicles. Mol. Biol. Cell. 10:1463-1475
    (15)Denny, P. W., Gokool, S., et al., (2000) Acylation-dependent Protein Export in Leishmania. J. Biol. Chem. 275:11017–11025
    (16)Fleenor, D. L., Pang, I., et al., (2003) Involvement of AP-1 in Interleukin-1α–StimulatedMMP-3 Expression in Human Trabecular Meshwork Cells. IOVS 44:3494-3501
    (17)Vincenti, M. P., Brinckerhoff, C. E., (2002) Transcriptional regulation of collagenase (MMP-1, MMP-13)genes in arthritis: integration of complex signaling pathways forthe recruitment of gene-specific transcription factors. Arthritis Res 4:157-164
    (18)Tak, P. P., Firestein, G. S.,(2001) NF-kB:a key role in flammatory diseases. J. Clin. Invest. 107:7-11
    (19)Gronich, J., Konieczkowski, M., (1994) Interleukin 1 alpha causes rapid activation of cytosolic phospholipase A2 by phosphorylation in rat mesangial cells. J. Clin. Invest. 93:1224-1233
    (20)Luo, M., Flamand, N., et al., (2006) Metabolism of arachidonic acid to eicosanoids within the nucleus. Biochimica et Biophysica Acta 1761:618-625
    (21)Wolfram J., Emmanuelle P. et al.(2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401-2412
    (22)Karin, M., (1995) The Regulation of AP-1 Activity by Mitogen-activated Protein Kinases . Journal of Biological Chemistry 270:16483-16486
    (23)Mengshol, J. A., Vincenti, M. P., et al., (2000) Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Res 43:801-811
    (24)Dayer, J. M., (2003) The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology 42:ii3-ii10
    (25)Shibakawa A., Yudoh, K. et al., (2005) The role of subchondral bone resorption pits in osteoarthritis : MMP production by cells derived from bone marrow. OsteoArthritis and Cartilage 13:679-687
    (26)Beutler, B., Cerami, A.,(1986) Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature (London) 320:584-588
    (27)Dinarello, C. A. (1986) Interleukin-1: Amino acid sequences, multiple biological activities and comparison with tumor necrosis factor. Year Immunol. 2:68-89
    (28)Clore, G. M., Gronenborn, A. M., (1999) Determining Structures of LargeProteins and Protein Complexes by NMR. Biological Magneticc Resonance 16:3-26
    (29)Clore, G. M., Gronenborn, A. M., (1991) Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science 252(5011):1390-9
    (30)Gronenborn, A.M., Clore, G. M., (1995) Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. Crit Rev Biochem Mol Biol 30:351-85
    (31)Clore, G. M., Gronenborn, A.M., (1998) Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol 16:22-34
    (32)Salzmann, M., Pervushin, K., et al., (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585-90.
    (33)Rance, M. , J. P. Loria, et al. (1999) Sensitivity improvement of transverse relaxation-optimized spectroscopy. J. Magn. Reson. 136:92-101
    (34)Meissner, A., Sorensen, O. W. (2001) A Sequential HNCA NMR Pulse Sequence for ProteinBackbone Assignment. J. Magn. Reson. 150:100-4
    (35)Linge, J. P., Habeck, M., (2003) ARIA:automated NOE assignment and NMR structure calculation. Bioinformatics. 19:315-316
    (36)Linge, J. P., O’Donoghue, S. I., (2001) Automated Assignment of Ambiguous Nuclear Overhauser Effects with ARIA. Methods in Enzymology 339:71-90
    (37)Brunger, A. T., Adams, P. D., (1998) Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination. Acta Cryst. 54:905-921
    (38)Wishart, D. S., Sykes, B. D., et al., (1992) The Chemical Shift Index: A Fast and Simple Method for the Assignment of Protein Secondary Structure through NMR Spectroscopy. Biochemistry 31:1647-1651
    (39)Wishart, D. S., Sykes, B. D., (1994) The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. Journal of Biomolecular NMR 4:171-180
    (40)Nilges, M., Clore, G. M., et al., (1988) Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. FEBS Letter 239:129-136

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE