簡易檢索 / 詳目顯示

研究生: 楊智皓
Yang, Zhi-Hao
論文名稱: Optimization of Task Allocation Problem in Grid System based on Cellular Automata Monte-Carlo Simulation and Genetic Algorithm
結合細胞自動機與蒙地卡羅法和基因演算法求解網格計算系統之任務指派問題
指導教授: 葉維彰
Yeh, Wei-Chang
口試委員: 陳茂生
唐麗英
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 45
中文關鍵詞: 網格計算
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    網格計算系統是一個整合各種不同的分配資源系統,用來提供一個高速而且有效的計算處理大量並且繁雜的任務。隨著系統越來越大,網格計算系統成為了基礎並且強大的科學方法。在網格計算系統中,資源分配系統是用來將任務分割成不同的子任務並且指派給系統的資源點已得到最好的服務要求。其中服務要求可以成本、執行時間、可靠度等等的需求。到目前為止,科學家已經提供了許多的數學方法來處理找尋這些最好的服務要求,像是SDP、IE、UGFM等等的方法。但是這些數學方法都有個缺點就是時間複雜度大大,在處理大規模的系統問題的時候,需要花很多時間在計算上面。因此,我們採取蒙地卡羅模擬法結合細胞自動機的概念去加速在大規模問題中尋找任務要求。在本文中討論的是總成本,這各種成本包含了執行的時間成本和可靠度成本。最後如何找出一個最好的任務分配狀況,我們透過基因演算法使得可以更加快速的找到一個有最小總成本的任務分配情形。


    Abstract:
    The grid system consists of many different distributed resources, which can supply high-speed computing efficiency to deal with several mass and complex workloads. Thus, the Grid computing is a powerful and fundamental technology in the future. In Grid systems, a resource management system (RMS) would assign many subtasks to adequate resources for sake of better service cost (time or reliability). Nowadays, lots of methodologies (such as the SDP, IE, and UGFM et al.) can exactly calculate the service cost (time or reliability) of a grid system, but those have high time complexity when service require was evaluated in a large-scale system. Therefore, we applied Cellular automata Monte-Carlo simulation to estimate approximate service reliability of a large-scale grid system. In this paper we computed total cost by system reliability and maximum time. Finally, we adopted Genetic Algorithm to search the best assignment combination of subtasks and resource for optimal service total cost.

    Table of Contents 中文摘要 i Abstract: ii Table of Contens iii Acronyms iv Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 3 1.3 Problem Statement and Objectives 4 1.4 The organization of this thesis 6 Chapter 2 Paper Review 7 2.1 Grid computing 7 2.2 Genetic algorithm 9 2.3 Cellular automata and Monte-Carlo method 10 Chapter 3 Methodology 12 3.1 Grid computing 12 3.2 Genetic Algorithm 15 3.3 Cellular automata and Monte-Carlo 22 3.4 Total cost analysis 29 Chapter 4 Experimental setup and experimental result 30 4.1 Small-Scale model 31 4.1.1 Experimental setup 31 4.1.2 Experiment result 34 4.2 Large-Scale model 37 4.2.1 Experimental setup 37 5.1 Conclusion 41 5.2 Feature 42 References 43

    References
    [1] Foster, and C. Kesselman, The Grid2: Blueprint for a New Computing Infrastructure, Morgan Kauffmann, 2nd edition, 2004.
    [2] H. Wang and H. Pham, “Survey of reliability and availability evaluation of complex networks using Monte Carlo techniques,” Microelectronics Reliability, vol. 37, no. 2, pp. 187–209, 1997.
    [3] X. Bai , H. Yu, Y. Ji , D. C. Marinescu, ”Resource matching and a matching service for an intelligent grid”, International Journal of Computational Intelligence, vol.1, no.3, pp.163-171, 2004
    [4] A. Clematis, A. Corana, D. D’Agostino, A. Galizia, A. Quarati, “Job-resource matchmaking on Grid through two-level benchmarking”, Future Generation Computer Systems, vol.26, no.8, pp.1165-1179, 2010
    [5] D. Abramson, R. Buyya, J. Giddy, “A computational economy for grid computing and its implementation in the Nimrod-G resource broker”, Future Generation Computer Systems, vol.18, no.8, pp.1061-1074, 2002
    [6] R. Buyya, D. Abramson, J. Giddy, “Nimrod-G: an architecture for a resource management and scheduling system in a global computational grid”, In: International Conference on High Performance Computing in Asia-Pacific Region (HPC Asia 2000), Beijing, China, IEEE Computer Society Press, USA, 2000
    [7] A. Dogan, F. Ozguner, “Scheduling independent tasks with QoS requirements in grid computing with time-varying resource prices”, In Proceedings of GRID 2002, LNCS, vol.2536, pp.58-69, 2002
    [8] C. Li, L. Li, “Competitive proportional resource allocation policy for computational grid”, Future Generation Computer Systems, vol.20, no.6, 1041–1054, 2004.
    [9] H. Liu, A. Abraham, A. Ella Hassanien, “Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm”, Future Generation Computer Systems, vol.26, no.8, pp.1336-1343, 2010.
    [10] S. S. Chauhan, R. C. Joshi, “QoS Guided Heuristic Algorithms for Grid Task Scheduling”, International Journal of Computer Applications, vol.2, no.9, pp.24–31, 2010.
    [11] J. Yang, H. Xu, L. Pan, P. Jia, F. Long, M. Jie, “Task scheduling using Bayesian optimization algorithm for heterogeneous computing environments”, Applied Soft Computing, 2011, doi:10.1016/j.asoc.2010.11.029
    [12] Y. S. Dai, G. Levitin, “Optimal Resource Allocation for Maximizing Performance and Reliability in Tree-Structured Grid Services”, IEEE Transactions on Reliability, vol.56, no.3, pp.444–453, 2007.
    [13] J.H. Holland,” Adaptation in natural and artificial systems “, University of Michigan Press, Ann Arbor. MI (1975)
    [14] D.E. Goldberg, “Genetic algorithms in search of optimization and machine learning”, Addison-Wesley, Reading, MA (1989)
    [15] A. Kumar, R. Pathak and Y. Gupta, “Genetic algorithm-based reliability optimization for computer network expansion”, IEEE Transaction on Reliability, vol.44, No1, pp. 63–72, 1995.
    [16] M. Marseguerra, E. Zio and M. Cipollone, “Designing optimal degradation tests via multi-objective genetic algorithms”, Reliability Engineering and System Safety, vol.79, pp. 87–94, 2003.
    [17] G. Levitin, Y.S. Dai, M. Xie and K.L. Poh,” Optimizing survivability of multi-state systems with multi-level protection by multi-processor genetic algorithm”, Reliability Engineering and System Safety, vol.82, pp. 93–104, 2003.
    [18] Yi-Kuei Lin,and Cheng-Ta Yeh,” Maximal network reliability with optimal transmission line assignment for stochastic electric power networks via genetic algorithms”, Applied Soft Computing, vol.11, No.2, pp.2714-2724, 2011.
    [19] P.C. Chu, J.E. Beasley, “A genetic algorithm for the generalized assignment problem”, Computers and Operations Research , Vol. 24, No. 1, pp. 17-23, 1997.
    [20] J.M. Wilson, A genetic algorithm for the generalized assignment problem, Journal of Operational Research Society, vol.48, No.8, pp.804–809, 1997.
    [21] Z.J. Lee, Y.P. Wang, S.F. Su, “A genetic algorithm based robust learning credit assignment cerebellar model articulation controller”, Applied Soft Computing vol.4, No.4, pp.357–367, 2004.
    [22] S. Salcedo-Sanz, J.A. Portilla-Figueras, E.G. Ortiz-Garcia, A.M. Perez-Bellido, C. Thraves, A. Fernandez-Anta, X. Yao, “Optimal switch location in mobile communication networks using hybrid genetic algorithms”, Applied Soft Computing, vol.8, pp.1486–1497, 2008.
    [23] S. Salcedo-Sanz, X. Yao, “Assignment of cells to switches in a cellular mobile network using a hybrid Hopfield network-genetic algorithm approach”, Applied Soft Computing, vol.8, pp.216–224, 2008.
    [24] C. M. Rocco and E. Zio, “Solving advanced network reliability problems by means of cellular automata and Monte Carlo sampling,” Reliability Engineering & System Safety, vol. 89, no. 2, pp. 219–226, 2005.
    [25] S. J. Kamat and M. W. Riley, “Determination of reliability using eventbased Monte Carlo simulation,” IEEE Trans. Reliability, vol. R-24, no.1, pp. 73–75, 1975.
    [26] S. J. Kamat and W. E. Franzmeier, “Determination of reliability using event-based Monte Carlo simulation, Part2,” IEEE Trans. Reliability, vol. R-25, no. 3, pp. 254–255, 1976.
    [27] Wei-Chang Yeh, Yi-Cheng Lin, and Yuk Ying Chun, “Performance Analysis of Cellular Automata Monte Carlo Simulation for estimating Network Reliability”, Expert Systems With Applications, Vol. 37, No. 5, pp. 3537-3544, 2010.
    [28] Wei-Chang Yeh, Yi-Cheng Lin, Yuk Ying Chung, and Ming-Chang Chih, “A Particle Swarm Optimization Approach Based on Monte Carlo Simulation for Solving the Complex Network Reliability Problem”, IEEE Transactions on Reliability, Vol. 59, No. 1, pp. 212-221, 2010.
    [29] Yuan-Shun Dai , Gregory Levitin , Senior Member ,and Kishor S. Trivedi ,”Performance and Reliability of Tree-Structured Grid Services Considering Data Dependence and Failure Correlation”, IEEE Transactions on Computers, vol 56, no. 7,pp.925-936, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE