研究生: |
黃尤傑 |
---|---|
論文名稱: |
Electrical stimulation via carbon nanotube rope promotes the differentiation and maturity of neural stem cells |
指導教授: |
王子威
Wang, Tzu Wei |
口試委員: |
戴念華
謝明發 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 奈米碳管繩 、導電材料 、神經幹細胞 、微電流刺激 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管自1991年首度被發現之後,迅速成為廣泛研究的材料之一。十幾年來,奈米碳管不斷的在奈米材料領域展現出潛力與應用價值。然而直到近年來,奈米碳管與神經科學領域的結合才逐漸的被探討與開發。本研究主要開發出一種能夠整合奈米碳管繩的裝置,希望藉由這個裝置,我們可以原位即時的觀察在奈米碳管繩上神經幹細胞的生長分化行為。本研究所開發出來的奈米碳管繩裝置除了能幫助我們觀察細胞行為外,還能夠讓我們藉由奈米碳管導電的特性來提供細胞在特定電流刺激下,觀察神經幹細胞的表現,評估未來應用在促進神經再生上的可行性。本研究中,奈米碳管由化學氣相沉積法所生長出來,收集下來的奈米碳管,再由團狀的型態製備為長約兩公分寬約一厘米的繩狀結構,繩狀奈米碳管再進一步組裝成為一個能夠培養細胞與提供電流刺激的裝置。奈米碳管的特性由掃描式電子顯微鏡、穿隧式電子顯微鏡以及拉曼光譜來分析。奈米碳管的生物相容性藉由WST-1、LDH還有Live/Dead染劑進行評估測試。結果顯示本研究所生長出來的奈米碳管為單壁奈米碳管,且奈米碳管並無顯著的生物毒性。神經幹細胞經過三週的培養仍然能夠存活在奈米碳管繩上。藉由奈米碳管繩裝置,我們發現神經細胞的突觸結構會受到奈米碳管繩上的表面結構導引所影響,進而偏好朝向表面螺紋結構的方向生長。另一方面,藉由螢光顯微鏡、及時定量聚合酶連鎖反應系統與螢光免疫染色評估後,觀察到 5 mV十五分鐘間歇性刺激有促進神經幹細胞突觸生長長度和神經幹細胞成熟分化的功效。
1. Franze K, Guck J (2010) The biophysics of neuronal growth. Reports on Progress in
Physics 73: 094601.
2. Tessier-Lavigne M, Goodman CS (1996) The Molecular Biology of Axon Guidance.
Science 274: 1123-1133.
3. Reichenbach A, Pannicke T (2008) A New Glance at Glia. Science 322: 693-694.
4. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:
146-156.
5. Seil JT, Webster TJ (2010) Electrically active nanomaterials as improved neural
tissue regeneration scaffolds. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:
635-647.
6. Abarrategi A, Gutierrez MC, Moreno-Vicente C, Hortiguela MJ, Ramos V, et al.
(2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes.
Biomaterials 29: 94-102.
7. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering.
Biomaterials 28: 344-353.
8. Voge CM, Stegemann JP (2011) Carbon nanotubes in neural interfacing
applications. J Neural Eng 8: 011001.
9. Ando Y, Zhao X, Sugai T, Kumar M (2004) Growing carbon nanotubes. Materials
Today 7: 22-29.
10. Zhao N, He C, Jiang Z, Li J, Li Y (2006) Fabrication and growth mechanism of
carbon nanotubes by catalytic chemical vapor deposition. Materials Letters 60:
159-163.
11. Malarkey EB, Parpura V (2010) Carbon nanotubes in neuroscience. Acta
Neurochir Suppl 106: 337-341.
12. Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, et al. (2009) Interactions
Between Cultured Neurons and Carbon Nanotubes: A Nanoneuroscience Vignette.
Journal of Nanoneuroscience 1: 10-16.
13. Firme CP, 3rd, Bandaru PR (2010) Toxicity issues in the application of carbon
nanotubes to biological systems. Nanomedicine 6: 245-256.
14. Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity,
oxidative stress and genotoxicity induced by four typical nanomaterials: the role of
particle size, shape and composition. J Appl Toxicol 29: 69-78.
15. Gaillard C, Duval M, Dumortier H, Bianco A (2011) Carbon nanotube-coupled cell
adhesion peptides are non-immunogenic: a promising step toward new biomedical
devices. Journal of Peptide Science 17: 139-142.
16. Yun Y, Dong Z, Tan Z, Schulz MJ, Shanov V (2009) Fibroblast cell behavior on
chemically functionalized carbon nanomaterials. Materials Science and Engineering:
C 29: 719-725.
17. Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, et al. (2009) Conductive
single-walled carbon nanotube substrates modulate neuronal growth. Nano Letters
9: 264-268.
18. Lee W, Parpura V (2009) Wiring neurons with carbon nanotubes. Front Neuroeng
2: 8.
19. Cho Y, Borgens RB (2010) The effect of an electrically conductive carbon
nanotube/collagen composite on neurite outgrowth of PC12 cells. Journal of
Biomedical Materials Research Part A 95A: 510-517.
20. Kim Y, Kim H-S, Yun YS, Bak H, Jin H-J Ag-Doped Multiwalled Carbon
Nanotube/Polymer Composite Electrodes. Journal of Nanoscience and
Nanotechnology 10: 3571-3575.
21. Wu Z, Chen Z, Du X, Logan JM, Sippel J, et al. (2004) Transparent, Conductive
Carbon Nanotube Films. Science 305: 1273-1276.
22. Sano M, Kamino A, Okamura J, Shinkai S (2001) Self-Organization of
PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir−Blodgett
Films. Langmuir 17: 5125-5128.
23. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, et al. (2007)
The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol
Lett 168: 121-131.
24. Cellot G, Ballerini L, Prato M, Bianco A (2010) Neurons are able to internalize
soluble carbon nanotubes: new opportunities or old risks? Small 6: 2630-2633.
25. Ajayan PM (1999) Nanotubes from Carbon. Chemical Reviews 99: 1787-1800.
26. Shiral Fernando KA, Lin Y, Sun Y-P (2004) High Aqueous Solubility of
Functionalized Single-Walled Carbon Nanotubes. Langmuir 20: 4777-4778.
27. Katz E, Willner I (2004) Biomolecule-Functionalized Carbon Nanotubes:
Applications in Nanobioelectronics. ChemPhysChem 5: 1084-1104.
28. Gilmore JL, Yi X, Quan L, Kabanov AV (2008) Novel nanomaterials for clinical
neuroscience. J Neuroimmune Pharmacol 3: 83-94.
29. Shein M, Greenbaum A, Gabay T, Sorkin R, David-Pur M, et al. (2009) Engineered
neuronal circuits shaped and interfaced with carbon nanotube microelectrode
arrays. Biomed Microdevices 11: 495-501.
30. Grabinski C, Hussain S, Lafdi K, Braydichstolle L, Schlager J (2007) Effect of
particle dimension on biocompatibility of carbon nanomaterials. Carbon 45:
2828-2835.
31. Nimmagadda A, Thurston K, Nollert MU, McFetridge PS (2006) Chemical
modification of SWNT alters in vitro cell-SWNT interactions. J Biomed Mater Res A
76: 614-625.
32. Lobo A, Antunes E, Machado A, Pachecosoares C, Travaairoldi V, et al. (2008) Cell
viability and adhesion on as grown multi-wall carbon nanotube films. Materials
Science and Engineering: C 28: 264-269.
33. MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP (2005)
Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J
Biomed Mater Res A 74: 489-496.
34. Matsumoto K, Sato C, Naka Y, Kitazawa A, Whitby RL, et al. (2007) Neurite
outgrowths of neurons with neurotrophin-coated carbon nanotubes. J Biosci Bioeng
103: 216-220.
35. Hu H, Ni Y, Mandal SK, Montana V, Zhao B, et al. (2005) Polyethyleneimine
Functionalized Single-Walled Carbon Nanotubes as a Substrate for Neuronal Growth.
The Journal of Physical Chemistry B 109: 4285-4289.
36. Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, et al. (2007) Robust cell
migration and neuronal growth on pristine carbon nanotube sheets and yarns.
Journal of Biomaterials Science, Polymer Edition 18: 1245-1261.
37. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon
nanotubes. Carbon 44: 1034-1047.
38. Belyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, et al. (2009) Effects of
carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30: 702-711.
39. Malarkey EB, Reyes RC, Zhao B, Haddon RC, Parpura V (2008) Water Soluble
Single-Walled Carbon Nanotubes Inhibit Stimulated Endocytosis in Neurons. Nano
Letters 8: 3538-3542.
40. Chao TI, Xiang S, Chen CS, Chin WC, Nelson AJ, et al. (2009) Carbon nanotubes
promote neuron differentiation from human embryonic stem cells. Biochem Biophys
Res Commun 384: 426-430.
41. Silva GA (2005) Nanotechnology approaches for the regeneration and
neuroprotection of the central nervous system. Surg Neurol 63: 301-306.
42. Zhang X, Prasad S, Niyogi S, Morgan A, Ozkan M, et al. (2005) Guided neurite
growth on patterned carbon nanotubes. Sensors and Actuators B: Chemical 106:
843-850.
43. Anava S, Greenbaum A, Ben Jacob E, Hanein Y, Ayali A (2009) The regulative role
of neurite mechanical tension in network development. Biophys J 96: 1661-1670.
44. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, et al. (2005) Carbon
Nanotube Substrates Boost Neuronal Electrical Signaling. Nano Letters 5: 1107-1110.
45. Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, et al. (2007)
Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic
stimulation in cultured brain circuits. J Neurosci 27: 6931-6936.
46. Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, et al. (2009) Carbon
nanotubes might improve neuronal performance by favouring electrical shortcuts.
Nat Nanotechnol 4: 126-133.
47. McCaig C, Rajnicek A (1991) Electrical fields, nerve growth and nerve
regeneration. Experimental Physiology 76: 473-494.
48. Kitchen S, Bazin S (2002) Electrotherapy: evidence-based practice: Churchill
Livingstone.
49. Graves M, Hassell T, Beier B, Albors G, Irazoqui P (2011) Electrically Mediated
Neuronal Guidance with Applied Alternating Current Electric Fields. Annals of
Biomedical Engineering 39: 1759-1767.
50. Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VMK (2007) Electrical
stimulation promotes sensory neuron regeneration and growth-associated gene
expression. Experimental Neurology 205: 347-359.
51. Li L, Jiang J (2011) Stem cell niches and endogenous electric fields in tissue repair.
Frontiers of Medicine 5: 40-44.
52. Gheith MK, Pappas TC, Liopo AV, Sinani VA, Shim BS, et al. (2006) Stimulation of
Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled
Carbon Nanotubes. Advanced Materials 18: 2975-2979.
53. Kam NWS, Jan E, Kotov NA (2008) Electrical Stimulation of Neural Stem Cells
Mediated by Humanized Carbon Nanotube Composite Made with Extracellular
Matrix Protein. Nano Letters 9: 273-278.
54. Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers
from chemical vapor deposition synthesis. Science 304: 276-278.
55. Ci L, Wei J, Wei B, Liang J, Xu C, et al. (2001) Carbon nanofibers and single-walled
carbon nanotubes prepared by the floating catalyst method. Carbon 39: 329-335.
56. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, et al. (1995) Survival and
differentiation of adult neuronal progenitor cells transplanted to the adult brain.
Proceedings of the National Academy of Sciences 92: 11879-11883.
57. Liu Z, Qin L-C (2005) Structure and energetics of carbon nanotube ropes. Carbon
43: 2146-2151.
58. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of
carbon nanotubes. Physics Reports 409: 47-99.
59. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH,
Baharvand H, et al. (2011) Application of conductive polymers, scaffolds and
electrical stimulation for nerve tissue engineering. Journal of Tissue Engineering and
Regenerative Medicine 5: e17-e35.
60. Oliva D, Calì L, Feo S, Giallongo A (1991) Complete structure of the human gene
encoding neuron-specific enolase. Genomics 10: 157-165.
61. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, et al. (1992)
Purification, sequence, and cellular localization of a novel chromosomal protein that
binds to Methylated DNA. Cell 69: 905-914.
62. De Camilli P, Cameron R, Greengard P (1983) Synapsin I (protein I), a nerve
terminal-specific phosphoprotein. I. Its general distribution in synapses of the central
and peripheral nervous system demonstrated by immunofluorescence in frozen and
plastic sections. The Journal of Cell Biology 96: 1337-1354.
63. Guerette D, Khan P, Savard P, Vincent M (2007) Molecular evolution of type VI
intermediate filament proteins. BMC Evolutionary Biology 7: 164.
64. Susan K D (2001) The tubulin fraternity: alpha to eta. Current Opinion in Cell
Biology 13: 49-54.
65. Shafit-Zagardo B, Kalcheva N (1998) Making sense of the multiple MAP-2
transcripts and their role in the neuron. Molecular Neurobiology 16: 149-162.
66. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, et al. (2002)
Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:
2361-2366.
67. Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, et al. (2007) Spectroscopic
analysis confirms the interactions between single walled carbon nanotubes and
various dyes commonly used to assess cytotoxicity. Carbon 45: 1425-1432.
68. Belyanskaya L, Manser P, Spohn P, Bruinink A, Wick P (2007) The reliability and
limits of the MTT reduction assay for carbon nanotubes–cell interaction. Carbon 45:
2643-2648.
69. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite
outgrowth using an electrically conducting polymer. Proceedings of the National
Academy of Sciences 94: 8948-8953.
70. McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling Cell Behavior
Electrically: Current Views and Future Potential. Physiological Reviews 85: 943-978.
71. Chang K-A, Kim JW, Kim Ja, Lee S, Kim S, et al. (2011) Biphasic Electrical Currents
Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem
Cells. PLoS ONE 6: e18738.
72. Park SY, Park J, Sim SH, Sung MG, Kim KS, et al. (2011) Enhanced Differentiation
of Human Neural Stem Cells into Neurons on Graphene. Advanced Materials 23:
H263-H267.
73. Rossi F, Gianola S, Corvetti L (2007) Regulation of intrinsic neuronal properties
for axon growth and regeneration. Prog Neurobiol 81: 1-28.