簡易檢索 / 詳目顯示

研究生: 黃尤傑
論文名稱: Electrical stimulation via carbon nanotube rope promotes the differentiation and maturity of neural stem cells
指導教授: 王子威
Wang, Tzu Wei
口試委員: 戴念華
謝明發
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 54
中文關鍵詞: 奈米碳管繩導電材料神經幹細胞微電流刺激
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管自1991年首度被發現之後,迅速成為廣泛研究的材料之一。十幾年來,奈米碳管不斷的在奈米材料領域展現出潛力與應用價值。然而直到近年來,奈米碳管與神經科學領域的結合才逐漸的被探討與開發。本研究主要開發出一種能夠整合奈米碳管繩的裝置,希望藉由這個裝置,我們可以原位即時的觀察在奈米碳管繩上神經幹細胞的生長分化行為。本研究所開發出來的奈米碳管繩裝置除了能幫助我們觀察細胞行為外,還能夠讓我們藉由奈米碳管導電的特性來提供細胞在特定電流刺激下,觀察神經幹細胞的表現,評估未來應用在促進神經再生上的可行性。本研究中,奈米碳管由化學氣相沉積法所生長出來,收集下來的奈米碳管,再由團狀的型態製備為長約兩公分寬約一厘米的繩狀結構,繩狀奈米碳管再進一步組裝成為一個能夠培養細胞與提供電流刺激的裝置。奈米碳管的特性由掃描式電子顯微鏡、穿隧式電子顯微鏡以及拉曼光譜來分析。奈米碳管的生物相容性藉由WST-1、LDH還有Live/Dead染劑進行評估測試。結果顯示本研究所生長出來的奈米碳管為單壁奈米碳管,且奈米碳管並無顯著的生物毒性。神經幹細胞經過三週的培養仍然能夠存活在奈米碳管繩上。藉由奈米碳管繩裝置,我們發現神經細胞的突觸結構會受到奈米碳管繩上的表面結構導引所影響,進而偏好朝向表面螺紋結構的方向生長。另一方面,藉由螢光顯微鏡、及時定量聚合酶連鎖反應系統與螢光免疫染色評估後,觀察到 5 mV十五分鐘間歇性刺激有促進神經幹細胞突觸生長長度和神經幹細胞成熟分化的功效。


    Table of contents Chapter 1 Introduction 1 1.1 The Nervous System 1 1.2 Neuroregeneration 3 1.3 Carbon Nanotube 4 Chapter 2 Literature review 8 2.1 Nanoneuroscience 8 2.2 Biocompatibility of Carbon Nanotube 10 2.3 Neurons on Carbon Nanotubes 11 2.4 Effect of Electrical Stimulation on Neurons 14 2.5 Purpose of This Study 15 Chapter 3 Materials and Methods 16 3.1 Preparation of Carbon Nanotubes 16 3.1.1 Carbon Nanotube Growth via Chemical Vapor Deposition Method 16 3.1.2 Synthesis of Carbon Nanotube Rope 17 3.2 Carbon Nanotube Rope Stimulation Device 18 3.2.1 Assembly of Carbon Nanotube Rope Stimulation Device 18 3.2.2 Power Source for Cellular Electrical Stimulation – Data Acquisition Device 20 3.3 Characterization of Carbon Nanotubes 21 3.3.1 Carbon Nanotube Morphology Inspection by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) 21 3.3.2 Carbon Nanotube Quality Identification by Raman spectroscopy 22 3.4 Cytotoxicity of Carbon Nanotube Rope 22 3.4.1 WST-1 and LDH assay 22 3.4.2 Live/Dead assay 23 3.5 Cell Culture of Neural Stem Cells (NSCs) 24 3.6 Characterization of Neural Stem Cells on Carbon Nanotube Rope 25 3.6.1 GFP Transduction for Neural Stem Cells Observation 25 3.6.2 Gene Expression of Neural Stem Cells by qPCR 25 3.6.3 Protein Expression of Neural Stem Cells by ICC 26 3.7 Statistical Analysis 26 Chapter 4 Results 27 4.1 Carbon Nanotube Morphology 27 4.2 Carbon Nanotube Quality and Identification 28 4.3 Biocompatibility of Carbon Nanotube Rope 29 4.4 Carbon Nanotube Rope Stimulation Device 31 4.4.1 Characterization of Carbon Nanotube Rope Stimulation Device 31 4.4.2 Performance of Carbon Nanotube Rope Stimulation Device 32 4.5 Observation of Neural Stem Cells on Carbon Nanotube Rope 33 4.6 Electrical Stimulation of Neural Stem Cells with Device 36 4.7 Gene Expression of Neural Stem Cells on Carbon Nanotube Rope 38 4.8 Protein Expression of Neural Stem Cells on Carbon Nanotube Rope 40 Chapter 5 Discussion 42 5.1 Characterization of Carbon Nanotube 42 5.2 Cytotoxicity of Carbon Nanotube Rope 42 5.3 Directed and Enhanced Neurite Outgrowth of NSCs on CNT Rope 43 5.4 Electrical Stimulation Promotes Early Differentiation of Neural Stem Cells into Matured Neurons 44 Chapter 6 Conclusions 46 References 47

    1. Franze K, Guck J (2010) The biophysics of neuronal growth. Reports on Progress in
    Physics 73: 094601.
    2. Tessier-Lavigne M, Goodman CS (1996) The Molecular Biology of Axon Guidance.
    Science 274: 1123-1133.
    3. Reichenbach A, Pannicke T (2008) A New Glance at Glia. Science 322: 693-694.
    4. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:
    146-156.
    5. Seil JT, Webster TJ (2010) Electrically active nanomaterials as improved neural
    tissue regeneration scaffolds. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:
    635-647.
    6. Abarrategi A, Gutierrez MC, Moreno-Vicente C, Hortiguela MJ, Ramos V, et al.
    (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes.
    Biomaterials 29: 94-102.
    7. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering.
    Biomaterials 28: 344-353.
    8. Voge CM, Stegemann JP (2011) Carbon nanotubes in neural interfacing
    applications. J Neural Eng 8: 011001.
    9. Ando Y, Zhao X, Sugai T, Kumar M (2004) Growing carbon nanotubes. Materials
    Today 7: 22-29.
    10. Zhao N, He C, Jiang Z, Li J, Li Y (2006) Fabrication and growth mechanism of
    carbon nanotubes by catalytic chemical vapor deposition. Materials Letters 60:
    159-163.
    11. Malarkey EB, Parpura V (2010) Carbon nanotubes in neuroscience. Acta
    Neurochir Suppl 106: 337-341.
    12. Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, et al. (2009) Interactions
    Between Cultured Neurons and Carbon Nanotubes: A Nanoneuroscience Vignette.
    Journal of Nanoneuroscience 1: 10-16.
    13. Firme CP, 3rd, Bandaru PR (2010) Toxicity issues in the application of carbon
    nanotubes to biological systems. Nanomedicine 6: 245-256.
    14. Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity,
    oxidative stress and genotoxicity induced by four typical nanomaterials: the role of
    particle size, shape and composition. J Appl Toxicol 29: 69-78.
    15. Gaillard C, Duval M, Dumortier H, Bianco A (2011) Carbon nanotube-coupled cell
    adhesion peptides are non-immunogenic: a promising step toward new biomedical
    devices. Journal of Peptide Science 17: 139-142.
    16. Yun Y, Dong Z, Tan Z, Schulz MJ, Shanov V (2009) Fibroblast cell behavior on
    chemically functionalized carbon nanomaterials. Materials Science and Engineering:
    C 29: 719-725.
    17. Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, et al. (2009) Conductive
    single-walled carbon nanotube substrates modulate neuronal growth. Nano Letters
    9: 264-268.
    18. Lee W, Parpura V (2009) Wiring neurons with carbon nanotubes. Front Neuroeng
    2: 8.
    19. Cho Y, Borgens RB (2010) The effect of an electrically conductive carbon
    nanotube/collagen composite on neurite outgrowth of PC12 cells. Journal of
    Biomedical Materials Research Part A 95A: 510-517.
    20. Kim Y, Kim H-S, Yun YS, Bak H, Jin H-J Ag-Doped Multiwalled Carbon
    Nanotube/Polymer Composite Electrodes. Journal of Nanoscience and
    Nanotechnology 10: 3571-3575.
    21. Wu Z, Chen Z, Du X, Logan JM, Sippel J, et al. (2004) Transparent, Conductive
    Carbon Nanotube Films. Science 305: 1273-1276.
    22. Sano M, Kamino A, Okamura J, Shinkai S (2001) Self-Organization of
    PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir−Blodgett
    Films. Langmuir 17: 5125-5128.
    23. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, et al. (2007)
    The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol
    Lett 168: 121-131.
    24. Cellot G, Ballerini L, Prato M, Bianco A (2010) Neurons are able to internalize
    soluble carbon nanotubes: new opportunities or old risks? Small 6: 2630-2633.
    25. Ajayan PM (1999) Nanotubes from Carbon. Chemical Reviews 99: 1787-1800.
    26. Shiral Fernando KA, Lin Y, Sun Y-P (2004) High Aqueous Solubility of
    Functionalized Single-Walled Carbon Nanotubes. Langmuir 20: 4777-4778.
    27. Katz E, Willner I (2004) Biomolecule-Functionalized Carbon Nanotubes:
    Applications in Nanobioelectronics. ChemPhysChem 5: 1084-1104.
    28. Gilmore JL, Yi X, Quan L, Kabanov AV (2008) Novel nanomaterials for clinical
    neuroscience. J Neuroimmune Pharmacol 3: 83-94.
    29. Shein M, Greenbaum A, Gabay T, Sorkin R, David-Pur M, et al. (2009) Engineered
    neuronal circuits shaped and interfaced with carbon nanotube microelectrode
    arrays. Biomed Microdevices 11: 495-501.
    30. Grabinski C, Hussain S, Lafdi K, Braydichstolle L, Schlager J (2007) Effect of
    particle dimension on biocompatibility of carbon nanomaterials. Carbon 45:
    2828-2835.
    31. Nimmagadda A, Thurston K, Nollert MU, McFetridge PS (2006) Chemical
    modification of SWNT alters in vitro cell-SWNT interactions. J Biomed Mater Res A
    76: 614-625.
    32. Lobo A, Antunes E, Machado A, Pachecosoares C, Travaairoldi V, et al. (2008) Cell
    viability and adhesion on as grown multi-wall carbon nanotube films. Materials
    Science and Engineering: C 28: 264-269.
    33. MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP (2005)
    Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J
    Biomed Mater Res A 74: 489-496.
    34. Matsumoto K, Sato C, Naka Y, Kitazawa A, Whitby RL, et al. (2007) Neurite
    outgrowths of neurons with neurotrophin-coated carbon nanotubes. J Biosci Bioeng
    103: 216-220.
    35. Hu H, Ni Y, Mandal SK, Montana V, Zhao B, et al. (2005) Polyethyleneimine
    Functionalized Single-Walled Carbon Nanotubes as a Substrate for Neuronal Growth.
    The Journal of Physical Chemistry B 109: 4285-4289.
    36. Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, et al. (2007) Robust cell
    migration and neuronal growth on pristine carbon nanotube sheets and yarns.
    Journal of Biomaterials Science, Polymer Edition 18: 1245-1261.
    37. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon
    nanotubes. Carbon 44: 1034-1047.
    38. Belyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, et al. (2009) Effects of
    carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30: 702-711.
    39. Malarkey EB, Reyes RC, Zhao B, Haddon RC, Parpura V (2008) Water Soluble
    Single-Walled Carbon Nanotubes Inhibit Stimulated Endocytosis in Neurons. Nano
    Letters 8: 3538-3542.
    40. Chao TI, Xiang S, Chen CS, Chin WC, Nelson AJ, et al. (2009) Carbon nanotubes
    promote neuron differentiation from human embryonic stem cells. Biochem Biophys
    Res Commun 384: 426-430.
    41. Silva GA (2005) Nanotechnology approaches for the regeneration and
    neuroprotection of the central nervous system. Surg Neurol 63: 301-306.
    42. Zhang X, Prasad S, Niyogi S, Morgan A, Ozkan M, et al. (2005) Guided neurite
    growth on patterned carbon nanotubes. Sensors and Actuators B: Chemical 106:
    843-850.
    43. Anava S, Greenbaum A, Ben Jacob E, Hanein Y, Ayali A (2009) The regulative role
    of neurite mechanical tension in network development. Biophys J 96: 1661-1670.
    44. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, et al. (2005) Carbon
    Nanotube Substrates Boost Neuronal Electrical Signaling. Nano Letters 5: 1107-1110.
    45. Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, et al. (2007)
    Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic
    stimulation in cultured brain circuits. J Neurosci 27: 6931-6936.
    46. Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, et al. (2009) Carbon
    nanotubes might improve neuronal performance by favouring electrical shortcuts.
    Nat Nanotechnol 4: 126-133.
    47. McCaig C, Rajnicek A (1991) Electrical fields, nerve growth and nerve
    regeneration. Experimental Physiology 76: 473-494.
    48. Kitchen S, Bazin S (2002) Electrotherapy: evidence-based practice: Churchill
    Livingstone.
    49. Graves M, Hassell T, Beier B, Albors G, Irazoqui P (2011) Electrically Mediated
    Neuronal Guidance with Applied Alternating Current Electric Fields. Annals of
    Biomedical Engineering 39: 1759-1767.
    50. Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VMK (2007) Electrical
    stimulation promotes sensory neuron regeneration and growth-associated gene
    expression. Experimental Neurology 205: 347-359.
    51. Li L, Jiang J (2011) Stem cell niches and endogenous electric fields in tissue repair.
    Frontiers of Medicine 5: 40-44.
    52. Gheith MK, Pappas TC, Liopo AV, Sinani VA, Shim BS, et al. (2006) Stimulation of
    Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled
    Carbon Nanotubes. Advanced Materials 18: 2975-2979.
    53. Kam NWS, Jan E, Kotov NA (2008) Electrical Stimulation of Neural Stem Cells
    Mediated by Humanized Carbon Nanotube Composite Made with Extracellular
    Matrix Protein. Nano Letters 9: 273-278.
    54. Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers
    from chemical vapor deposition synthesis. Science 304: 276-278.
    55. Ci L, Wei J, Wei B, Liang J, Xu C, et al. (2001) Carbon nanofibers and single-walled
    carbon nanotubes prepared by the floating catalyst method. Carbon 39: 329-335.
    56. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, et al. (1995) Survival and
    differentiation of adult neuronal progenitor cells transplanted to the adult brain.
    Proceedings of the National Academy of Sciences 92: 11879-11883.
    57. Liu Z, Qin L-C (2005) Structure and energetics of carbon nanotube ropes. Carbon
    43: 2146-2151.
    58. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of
    carbon nanotubes. Physics Reports 409: 47-99.
    59. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH,
    Baharvand H, et al. (2011) Application of conductive polymers, scaffolds and
    electrical stimulation for nerve tissue engineering. Journal of Tissue Engineering and
    Regenerative Medicine 5: e17-e35.
    60. Oliva D, Calì L, Feo S, Giallongo A (1991) Complete structure of the human gene
    encoding neuron-specific enolase. Genomics 10: 157-165.
    61. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, et al. (1992)
    Purification, sequence, and cellular localization of a novel chromosomal protein that
    binds to Methylated DNA. Cell 69: 905-914.
    62. De Camilli P, Cameron R, Greengard P (1983) Synapsin I (protein I), a nerve
    terminal-specific phosphoprotein. I. Its general distribution in synapses of the central
    and peripheral nervous system demonstrated by immunofluorescence in frozen and
    plastic sections. The Journal of Cell Biology 96: 1337-1354.
    63. Guerette D, Khan P, Savard P, Vincent M (2007) Molecular evolution of type VI
    intermediate filament proteins. BMC Evolutionary Biology 7: 164.
    64. Susan K D (2001) The tubulin fraternity: alpha to eta. Current Opinion in Cell
    Biology 13: 49-54.
    65. Shafit-Zagardo B, Kalcheva N (1998) Making sense of the multiple MAP-2
    transcripts and their role in the neuron. Molecular Neurobiology 16: 149-162.
    66. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, et al. (2002)
    Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:
    2361-2366.
    67. Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, et al. (2007) Spectroscopic
    analysis confirms the interactions between single walled carbon nanotubes and
    various dyes commonly used to assess cytotoxicity. Carbon 45: 1425-1432.
    68. Belyanskaya L, Manser P, Spohn P, Bruinink A, Wick P (2007) The reliability and
    limits of the MTT reduction assay for carbon nanotubes–cell interaction. Carbon 45:
    2643-2648.
    69. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite
    outgrowth using an electrically conducting polymer. Proceedings of the National
    Academy of Sciences 94: 8948-8953.
    70. McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling Cell Behavior
    Electrically: Current Views and Future Potential. Physiological Reviews 85: 943-978.
    71. Chang K-A, Kim JW, Kim Ja, Lee S, Kim S, et al. (2011) Biphasic Electrical Currents
    Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem
    Cells. PLoS ONE 6: e18738.
    72. Park SY, Park J, Sim SH, Sung MG, Kim KS, et al. (2011) Enhanced Differentiation
    of Human Neural Stem Cells into Neurons on Graphene. Advanced Materials 23:
    H263-H267.
    73. Rossi F, Gianola S, Corvetti L (2007) Regulation of intrinsic neuronal properties
    for axon growth and regeneration. Prog Neurobiol 81: 1-28.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE