簡易檢索 / 詳目顯示

研究生: 吳柏旻
Wu, Pomin
論文名稱: The differential $\rm d_4(h_6^3)$ in the Adams spectral sequence for spheres
球的 Adams 譜序列之 d4(h36) 微分
指導教授: 林文雄
Lin, Wen-Hsiung
口試委員: 鄭志豪
Teh, Jyh-Haur
謝春忠
Hsieh, Chun-Chung
楊樹文
Yang, Su-Win
張樹城
Chang, Shun-Cheng
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 81
中文關鍵詞: 同倫理論Adams 譜序列
外文關鍵詞: homotopy theory, Adams spectral sequence
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We show that there is a non-trivial differential $d_4(h_6^3) =h_0^3g_4$ in the mod $2$ Adams spectral sequence for spheres.
    This together with the results in \cite{barratt_differentials_1970,lin_differential_1998,kan_differential_2001}
    completely settle the differentials of $h_i^3$ for $i\ge4$.
    (The differentials of $h_i^3$ for $i=0,1,2,3$ are well-known.)
    Our proof uses the Kevaire invariant elements $\theta_i \in\pi_{2^{i+1}-2}^S$ for $i=4,5$
    with the properties $2\theta_4 =0$, $2\theta_5 =0$.


    1 Introduction 1 2 Outline of the proof of Theorem 1.4 3 3 Calculations of some Ext groups 14 4 Proofs of Theorem 2.39 and Theorem 2.40 48 5 Proof of Proposition 1.6, Proposition 1.7, and Proposition 2.46 61 6 Modi cation of the proof without 6 71

    [1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104.
    [2] , On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214.
    [3] , Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632.
    [4] M. G. Barratt, M. E. Mahowald, and M. C. Tangora, Some differentials in the Adams spectral sequence. II, Topology 9 (1970), 309-316.
    [5] M. G. Barratt, J. D. S. Jones, and M. E. Mahowald, The Kervaire invariant problem, Proceedings of the Northwestern Homotopy
    Theory Conference (Evanston, Ill., 1982), 1983, pp. 9-22.
    [6] A. K. Bousfeld, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The mod 􀀀 p lower central series and
    the Adams spectral sequence, Topology 5 (1966), 331-342.
    [7] William Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157-186.
    [8] Tai-Wei Chen, Determination of Ext5; A (Z/2, Z/2), Topology and its Applications 158 (2011), no. 5, 660-689.
    [9] Ralph L. Cohen, Wen-Hsiung Lin, and M. E. Mahowald, The Adams spectral sequence of the real projective spaces, Paci c J. Math.
    134 (1988), no. 1, 27-55.
    [10] Dale Husemoller, Fibre bundles, Third, Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994.
    [11] I. M. James, Whitehead products and vector fields on spheres, Proc. Cambridge Philos. Soc. 53 (1957), 817-820.
    [12] Daniel S. Kahn and Stewart B. Priddy, Applications of the transfer to stable homotopy theory, Bulletin of the American Mathematical
    Society 78 (1972), 981-987.
    [13] Chung-Wei Kan, A differential d4(h3^5) in the Adams spectral sequence for spheres, Ph.D. Thesis, National Tsing Hua University, 2001.
    [14] Michel A. Kervaire, A manifold which does not admit any differentiable structure, Commentarii Mathematici Helvetici 34 (1960),
    257-270.
    [15] Stanley O. Kochman and Mark Mahowald, On the computation of stable stems, The Cech centennial (Boston, MA, 1993), 1995,
    pp. 299-316.
    [16] Wen-Hsiung Lin, Ext4; A (Z/2, Z/2) and Ext5; A (Z/2, Z/2), Topology Appl. 155 (2008), no. 5, 459-496.
    [17] , A differential in the Adams spectral sequence for spheres, Stable and unstable homotopy (Toronto, ON, 1996), 1998,
    pp. 205-239.
    [18] , Algebraic Kahn-Priddy theorem, Paci c J. Math. 96 (1981), no. 2, 435-455.
    [19] Mark Mahowald and Martin Tangora, Some differentials in the Adams spectral sequence, Topology 6 (1967), 349-369.
    [20] R. James Milgram, Unstable homotopy from the stable point of view, Lecture Notes in Mathematics, vol. 368, Springer-Verlag, Berlin,
    1974.
    [21] Mamoru Mimura and Hirosi Toda, The (n + 20)-th homotopy groups of n-spheres, Journal of Mathematics of Kyoto University 3
    (1963), 37-58.
    [22] Mamoru Mimura, On the generalized Hopf homomorphism and the higher composition. II. i
    n(Sn) for i = 21 and 22, Journal of
    Mathematics of Kyoto University 4 (1965), 301-326.
    [23] Dennis Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1-79.
    [24] Martin C. Tangora, On the cohomology of the Steenrod algebra, Math. Z. 116 (1970), 18-64.
    [25] Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University
    Press, Princeton, N.J., 1962.
    [26] George W. Whitehead, Recent advances in homotopy theory, American Mathematical Society, Providence, R.I., 1970. Conference
    Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 5.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE