研究生: |
吳柏旻 Wu, Pomin |
---|---|
論文名稱: |
The differential $\rm d_4(h_6^3)$ in the Adams spectral sequence for spheres 球的 Adams 譜序列之 d4(h36) 微分 |
指導教授: |
林文雄
Lin, Wen-Hsiung |
口試委員: |
鄭志豪
Teh, Jyh-Haur 謝春忠 Hsieh, Chun-Chung 楊樹文 Yang, Su-Win 張樹城 Chang, Shun-Cheng |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 同倫理論 、Adams 譜序列 |
外文關鍵詞: | homotopy theory, Adams spectral sequence |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
We show that there is a non-trivial differential $d_4(h_6^3) =h_0^3g_4$ in the mod $2$ Adams spectral sequence for spheres.
This together with the results in \cite{barratt_differentials_1970,lin_differential_1998,kan_differential_2001}
completely settle the differentials of $h_i^3$ for $i\ge4$.
(The differentials of $h_i^3$ for $i=0,1,2,3$ are well-known.)
Our proof uses the Kevaire invariant elements $\theta_i \in\pi_{2^{i+1}-2}^S$ for $i=4,5$
with the properties $2\theta_4 =0$, $2\theta_5 =0$.
[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104.
[2] , On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214.
[3] , Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632.
[4] M. G. Barratt, M. E. Mahowald, and M. C. Tangora, Some differentials in the Adams spectral sequence. II, Topology 9 (1970), 309-316.
[5] M. G. Barratt, J. D. S. Jones, and M. E. Mahowald, The Kervaire invariant problem, Proceedings of the Northwestern Homotopy
Theory Conference (Evanston, Ill., 1982), 1983, pp. 9-22.
[6] A. K. Bousfeld, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The mod 􀀀 p lower central series and
the Adams spectral sequence, Topology 5 (1966), 331-342.
[7] William Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157-186.
[8] Tai-Wei Chen, Determination of Ext5; A (Z/2, Z/2), Topology and its Applications 158 (2011), no. 5, 660-689.
[9] Ralph L. Cohen, Wen-Hsiung Lin, and M. E. Mahowald, The Adams spectral sequence of the real projective spaces, Pacic J. Math.
134 (1988), no. 1, 27-55.
[10] Dale Husemoller, Fibre bundles, Third, Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994.
[11] I. M. James, Whitehead products and vector fields on spheres, Proc. Cambridge Philos. Soc. 53 (1957), 817-820.
[12] Daniel S. Kahn and Stewart B. Priddy, Applications of the transfer to stable homotopy theory, Bulletin of the American Mathematical
Society 78 (1972), 981-987.
[13] Chung-Wei Kan, A differential d4(h3^5) in the Adams spectral sequence for spheres, Ph.D. Thesis, National Tsing Hua University, 2001.
[14] Michel A. Kervaire, A manifold which does not admit any differentiable structure, Commentarii Mathematici Helvetici 34 (1960),
257-270.
[15] Stanley O. Kochman and Mark Mahowald, On the computation of stable stems, The Cech centennial (Boston, MA, 1993), 1995,
pp. 299-316.
[16] Wen-Hsiung Lin, Ext4; A (Z/2, Z/2) and Ext5; A (Z/2, Z/2), Topology Appl. 155 (2008), no. 5, 459-496.
[17] , A differential in the Adams spectral sequence for spheres, Stable and unstable homotopy (Toronto, ON, 1996), 1998,
pp. 205-239.
[18] , Algebraic Kahn-Priddy theorem, Pacic J. Math. 96 (1981), no. 2, 435-455.
[19] Mark Mahowald and Martin Tangora, Some differentials in the Adams spectral sequence, Topology 6 (1967), 349-369.
[20] R. James Milgram, Unstable homotopy from the stable point of view, Lecture Notes in Mathematics, vol. 368, Springer-Verlag, Berlin,
1974.
[21] Mamoru Mimura and Hirosi Toda, The (n + 20)-th homotopy groups of n-spheres, Journal of Mathematics of Kyoto University 3
(1963), 37-58.
[22] Mamoru Mimura, On the generalized Hopf homomorphism and the higher composition. II. i
n(Sn) for i = 21 and 22, Journal of
Mathematics of Kyoto University 4 (1965), 301-326.
[23] Dennis Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1-79.
[24] Martin C. Tangora, On the cohomology of the Steenrod algebra, Math. Z. 116 (1970), 18-64.
[25] Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University
Press, Princeton, N.J., 1962.
[26] George W. Whitehead, Recent advances in homotopy theory, American Mathematical Society, Providence, R.I., 1970. Conference
Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 5.