簡易檢索 / 詳目顯示

研究生: 陳君怡
Chun-Yi Chen
論文名稱: 深共熔點溶劑輔助之快速陽極處理法成長二氧化鈦奈米管與其場發性質探討
Field Emission of Titania Nanotube Arrays Prepared with a Fast Anodization Process Enabled by Use of a Deep Eutectic Solvent
指導教授: 呂世源
Shih-Yuan Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 103
中文關鍵詞: 陽極處理二氧化鈦奈米管場發射深共熔點溶劑
外文關鍵詞: anodization, TiO2, nanotube, field emission, deep eutectic solvent
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在製備奈米孔洞結構的各種製程中,陽極處理不但製程簡易,且成本低廉,易於量產,所製備出的奈米孔洞結構,可藉由參數調整得到孔洞大小均勻,排列整齊且規則堆積的奈米多孔結構。十餘年來,陽極氧化鋁模版(AAO)的製備與應用已經發展得相當成熟與多樣化,而近五年來亦開始發展二氧化鈦奈米管的製備。由初期的二氧化鈦奈米管的製備與改良,到後期的應用價值探討與機制研究,已漸漸吸引許多學者的高度興趣。由於二氧化鈦奈米管具有優良的光催化(photocatalysis)性質,是廣為人知的光觸媒材料,具有自清潔(selfcleaning)環境汙染物的特性;二氧化鈦奈米管的卓越的電催化性質(electrocatalysis)可以將其組裝為光電極參與水的分解反應,或是應用於染料敏化太陽能電池(dye-sensitized solar cell);亦可作為氫氣的檢測器(H2 sensor)與生化測器(biosensor)。
    關於鈦的陽極處理,本研究成果有:(1)添加深共熔點溶劑成功製備出孔洞在20~30奈米左右的孔洞結構,並成功改善二氧化鈦奈米管成長速率至每分鐘9.79微米;將深共熔點溶劑與甘油系統結合,可將原本孔洞50奈米的二氧化鈦奈米管擴張至80~100奈米。(2)藉由電解液成份的控制與機制的掌握,可以成功製備出非管狀結構的奈米結構。以琥珀酸為電解液製備出30奈米的奈米棒陣列,其高度約為20~100奈米。(3)製備出管徑為50與100奈米的二氧化鈦奈米管,作為相對的實驗對照組,探討反應機制與相關應用。(4)添加深共熔點溶劑之反應機制探討,修改文獻所提出之反應模型。(5)將快速成長與孔洞約為20~30奈二氧化碳奈米管,歷經不同鍛燒條件控制,應用於場發射 (field emission),在兩極間距(vacuum gap)為300μm時,可得到相當低的導通電場1.5V/μm (電流密度定義在1μA/cm2),並且在低電壓2.2 V/μm,就可到達大電流值1m A/cm2。(6)在不同的距離量測場發射,探討β值與距離關係,可得到僅與材料特性相關的特徵值β0值,為11,111,與奈米碳管場發射性質相近。


    Preparation of long, straight nanopore structures using the anodization process is relatively simple, low cost, and easy to mass-produce as compared to other processes. In addition, application properties of the nanopore structures such as size and uniformity can be easily adjusted by varying relevant operating parameters.
    The most popular and well-known application of the anodization process is the preparation of aluminum oxide membranes. For the past five years, researchers began to study the preparation of titanium dioxide nanotubes through Ti anodization. Titanium dioxide nanotubes have excellent photocatlytic and self-cleaning properties. They can be applied to water degradation processes because of their excellent electrocatalytic property. Such property allows them to be used in methanol oxidation process. Titanium dioxide nanotubes can also be used in a wide range of areas such as dye-sensitized solar cell and hydrogen sensing.
    Experimental results obtained from this research include the following. (1) Nanoporous structures with pore size of 20~30nm were successfully prepared with addition of a deep eutectic solvent (DES), and the growth rate of the titianium dioxide nanotubes can be as high as 9.79μm/min. Pore size of the nanostructure prepared can be increased from 50nm to 80~100nm by combining DES and glycerol as the solvent system. (2) Non-tubular nanostructures were successfully prepared through control of the composition of the electrolyte and reaction mechanism. Electrolyte composed mainly of succinic acid was used to prepare nanorod arrays with heights of 20~100nm. (3) Reaction mechanisms and applications of the titanium nanotubes prepared were studied. Comparison was made for titanium dioxide nanotubes of two different lengths, 50 and 100nm. (4) A modified nanotube growth mechanism was proposed to explain the high growth rate achieved in this work made possible by addition of the DES. (5) Field emission characteristics of the titania nanotubes of 20-30 nm with various heat treatment were studied. The turn-on field was 1.5V/μm (defined at current density of 1μA/cm2) when the vacuum gap was 300μm. The current density reached 1 mA/cm2 at the applied field of 2.2V/μm. (6) The relationship between the field enhancement factor (β) and vacuum gap was studied. The resulting absolute field enhancement factor, β0, was determined for the titanium dioxide nanotube arrays to be 11,111, which is larger than that of the carbon nanotubes grown on silicaon wafers.

    總目錄 中文摘要........................................................................................................................1 英文摘要....................................................................................................................... 2 致謝................................................................................................................................4 總目錄............................................................................................................................6 圖目錄............................................................................................................................8 表目錄..........................................................................................................................14 第一章序論..................................................................................................................15 1.1陽極處理技術的介紹............................................................................................15 1.2陽極處理的目的與應用........................................................................................16 1.3陽極氧化鋁的介紹................................................................................................17 1.4陽極氧化鈦的介紹................................................................................................18 1.5研究動機................................................................................................................20 第二章文獻回顧..........................................................................................................21 2.1以陽極處理法製備孔洞材料................................................................................22 2.1.1鈦之陽極處理.....................................................................................................22 2.1.2陽極處理鈦基材的電解液種類.........................................................................22 2.1.3陽極氧化鋁之反應機制.....................................................................................27 2.1.4利用陽極處理法製備二氧化鈦之反應機制.....................................................30 2.1.5利用陽極處理法製備二氧化鈦的各種應用.....................................................33 2.2室溫離子溶液........................................................................................................44 2.2.1室溫離子溶液的緣起與發展.............................................................................44 2.2.2室溫離子液體.....................................................................................................44 2.2.3深共熔點溶劑.....................................................................................................47 2.2.4室溫離子溶液的優點.........................................................................................50 2.3 場發射原理簡介...................................................................................................51 2.3.1場發射基本原理簡介.........................................................................................51 2.3.2場發射與Fower-Nordheim公式........................................................................52 2.3.3 Two-region field-emission model(TRFE model) ...............................................52 第三章研究方法..........................................................................................................55 3.1實驗藥品................................................................................................................55 3.2實驗器材................................................................................................................58 3.3分析儀器................................................................................................................59 3.4實驗流程................................................................................................................61 3.4.1反應裝置.............................................................................................................61 3.4.2以室溫離子溶液為電解液製備二氧化鈦奈米多孔結構.................................61 3.4.3以酸性電解液製備二氧化鈦奈米多孔結構與奈米棒陣列.............................62 3.4.4以甘油溶液製備二氧化鈦奈米孔洞結構.........................................................62 3.4.5室溫離子溶液(deep eutectic solvent) ................................................................63 第四章實驗結果與討論..............................................................................................64 4.1以陽極處理法製備二氧化鈦奈米結構................................................................64 4.1.1以陽極處理法製備二氧化鈦奈米管陣列.........................................................64 4.1.2以陽極處理法製備二氧化鈦奈米棒陣列.........................................................73 4.2以陽極處理法製備二氧化鈦奈米結構反應機制探討........................................75 4.2.1以陽極處理法製備二氧化鈦奈米管反應機制探討.........................................75 4.2.2添加深共熔點溶劑(DES)影響鈦的陽極處理反應機制探討...........................76 4.2.3 二氧化鈦奈米棒陣列反應機制探討................................................................82 4.2.4以酸性電解液製備二氧化鈦奈米管狀陣列.....................................................84 4.3二氧化鈦奈米管鍛燒條件與結晶性探討............................................................85 4.4場發射性質探討....................................................................................................89 第五章結論..................................................................................................................95 參考文獻......................................................................................................................97

    參考文獻
    □ Abbott, A. P.; D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, “Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic acids: Versatile Alternatives to Ionic liquids” JACS, 126, 9142-9147(2004).
    □ Abbott, A. P.; G..Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, “Novel Solvent Properties of Choline Chloride/Urea Mixtures” Chem Comm, 70-71(2002).
    □ Balaur, E.; J. M. Macak, L. Taveira, and P. Schmuki, “Tailoring the Wettability of TiO2 Nanotube Layers” Electrochemistry Communications, 7, 1066-1070(2005).
    □ Balaur, E.; J. M. Macak, H. Tsuchiya and P. Schmuki, “Wetting Behaviour of Layers of TiO2 Nanotubes with Different Diameters” Journal of Materials Chemistry, 15, 4488-4491(2005).
    □ Beranek, R.; H. Tsuchiya, T. Sugishima, J. M. Macak, L. Taveira, S. Fujimoto,H. Kisch, and P. Schmuki, “Enhancement and Limits of the Photoelectrochemical Response from Anodic TiO2 Nanotubes” Applied Physics Letters, 87, 243114(2005).
    □ Cai, Q.; M. Paulose, O. K. Varghese and C.A. Grime, “The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotubes Arrays by Anodic Oxidation” J Mater. Res., 20, 230-236(2005).
    □ Chen, P. L.; W. J. Huang, J. K. Chang, C. T. Kuo and F. M. Pan, “Fabrication and Field Emission Characteristics of Highly Ordered Titanium Oxide Nanodot Arrays” Electrochemical and Solid-State Letters, 8(10), H83-H86(2005).
    □ Chen, P. L.; Q. H. Li, YU. X. Liang and T. H. Wang, “Field-emission from long SnO2 nanobelt arrays” Applied Physics Letters, 85, 23, 5682-5684(2004)
    □ Chu, S. Z.; S. I. Inoue, K. Wada, S. Hishita and K. Kurashima, “Self-Organized Nanoporous Anodic Titania Films and ordered Titania Nanodots/Nanorods on Glass” Adv. Func. Mater., 15, 1343-1349(2005).
    □ Chu, S. and K. Wada, “Fabrication of Ideally Ordered Nanopores Alumina Films and Integrated Alumina Nanotubes Arrays by High Field Anodization” Advanced materials, 17, 2115-2119(2005).
    □ Ghicov, A.; H. Tsuchiya, J. M. Macak and P. Schmuki, “Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes” Electrochemistry Communications, 7, 505-509(2005).
    □ Gong, D.; C. A. Grime and O.K. Varghese, “Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation” J. Mater. Res., 16(12), 3331-3334(2001).
    □ Gratzeal, M. “Photoelectrochemical cells” Nature, 414, 338-344(2001).
    □ Hrapovic, S.; B. L. Luan, M. D’Amours, G.. Vatankhah, and G.. Jerkiewicz, “Morphology, Chemical Composition, and Electrochemical Characteristics of Colored Titanium Passive Layers” Langmuir, 17, 3051-3160(2001)
    □ Jessensky, O. and F. Muller, “Self-Organized of Hexagonal Pore Arrays in Anodic Alumina” Applied Physics Letters, 72, 1173-1175(1998).
    □ Li, A. P. and F. Muller, “Hexagonal Pore Arrays wire a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina” Applied Physics letters, 84(11), 6023-6026(1998).
    □ Ma, T.; M. Akiyama, E. Abe, and I. Imai, “High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode” Nanoletter, 5(12), 2543-2457(2005).
    □ Macak, J. M.; P. J. Barczuk, H. Tsuchiya, M. Z. Nowakowska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P. J. Kulesza, P. Schmuki, “Self-Organized Nanotubular TiO2 Matrix as Support for Dispersed Pt/Ru Nanoparticles: Enhancement of the Electrocatalytic Oxidation of Methanol” Electrochemistry Communications , 7, 576-580(2005).

    □ Macak, J. M.; H. Tsuchiya, A. Ghicov and P. Schmuki, “Dye-Sensitized Anodic TiO2 Nanotubes” Electrochemistry Communications, 7, 1133-1137(2005).
    □ Macak, J. M.; H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, “Smooth Anodic TiO2 Nanotubes” Angew. Chem. Int. Ed., 44, 7463-7465(2005).
    □ Macak, J. M.; L. V. Taveira, H. Tsuchiya, K. Sirotna, J. Macak and P. Schmuki, “Influence of Different Fluoride Containing Electrolytes on the Formation of Self-Organized Titania Nanotubes by Ti Anodization” J. Electroceram, 16, 29-34(2006).
    □ Macak, J. M. and Patrik Schmuki, “High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titania” Angew. Chem. Int. Ed., 44, 2100-2102(2005).
    □ Mahe´, E. and D. Devilliers, “Surface Modification of Titanium Substrates for the Preparation of Noble Metal Coated Anodes” Electrochimica Acta, 46, 29-636(2000).
    □ Masuda, H. and K. Fukuda, “Ordered metal nanohole arrays made by a two -step replication of honeycomb structures of anodic alumina” Science, 268(5026), 1466-468(1995).
    □ Masuda, H.; H.Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura, “Highly Ordered Nano Channel-Array Architecture in Anodic Alumina” Applied Physics Letters, 71, 2770-2772(1997).
    □ Masahiro, M. and T. Hiromasa, T.Yoshitake, K.Toshio, H. Hideo, “Electron Field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction” Applied Physics Letters, 89, 043114-1-043114-3(2006).
    □ Mor, G.. K.; K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, “Use of Highly Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells” Nano Letters, 6, 2, 215-218(2006).

    □ Mor, G.. K.; O. K. Varghese, M. Paulose, and C. A. Grimes, “Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films” Advanced Functional Materials, 15, 1291-1296(2005).
    □ Nielsch, K.; F. Müller, A. P. Li, and U. Gösele, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition” Advanced materials, 12(8), 582-586(2000).
    □ Park, J. H. and Allen J. Bard, “Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting” Nanoletters(2005).
    □ Paulose, M. E.; K. Shankar, O. K. Varghese, G.. K. Mor, B. Hardin and C. A. Grimes “Backside Illuminated Dye-Sensitized Solar Cells Based on Titania Nanotube Array Electrodes” Nanotechology, 17, 1446-1448(2006).
    □ Paulose, M. E.; K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G.. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes “Anodic Growth of Highly Ordered TiO¬2 Banotube Arrays to 134μm in Length.” The Journal of Physical Chemistry B Letters, (2006).
    □ Prida, V. M.; M. H. V´elez, K. R. Pirota, A. Men´endez and M. V´azquez, “Synthesis and Magnetic Properties of Ni Nanocylinders in Self-Aligned and Randomly Disordered Grown Titania Nanotubes” Nanotechology, 16, 2696-3406(2005).
    □ Quan, X.; S. Yang, X. Ruan and H. Zhao, “Preparation of titania nanotubes and their environmental applications as electrode” Environ. Sci. Technol., 39, 3770-3775(2005).
    □ Raja, K. S.; M. Misra and K. Paramguru, “Formation of Self-Ordered Nano-Tubular Structure of Anodic Oxide Layer on Titania” Electrochimica Acta, 51, 154-165(2005).

    □ Ruan, C.; M. Paulose, O.K. Varghese and C.A. Grimes, “Enhanced Photoelectrochemical-Response in Highly Ordered TiO2 Nanotube-Arrays Anodized in Boric Acid Containing Electrolyte” Solar Energy Materials & Solar Cells, 90, 1283-1295(2005).
    □ Ruan, C.; M. Paulose, O. K. Varghese, G. K. Mor and C. A. Grime, “Fabrication and Highly Ordered TiO2 Nanotubes Arrays Using an Organic Electrolyte” J. Phys. Chem. B, 109, 15754-15759(2005).
    □ Shankar, K.; G.. K. Mor, A. Fitzgerald and C. A. Grimes, “Cation Effect on the Electrochemical Formation of Very high Aspect Ratio TiO2 Nanotubes Arrays in Formamide-Water Mixtures” The Journal of Physical Chemistry C Letters, 111, 1, 21-26(2007)
    □ Sharma, A. K. “Anodizing Titanium for Space Applications” Thin solid films, 208, 48-54(1992).
    □ Taveira, L. V.; J. M. Macak, H. Tsuchiya, L. F. P. Dick and P. Schmuki, “Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F/(NH4)2SO4 Electrolytes” Journal of The electrochemical Society, 152, B405-B410(2005).
    □ Thompson, G.. E. “Porous Anodic Alumina: Fabrication, Characterization and Application” Thin Solid Films, 297, 192-201(1997).
    □ Varghese, O. K.; D. Gong , M. Paulose, K. G. Ong, E. C. Dicky and C. A. Grimes, “Extremely Change in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure” Adv. Mater., 15(7-8), 624-627(2003).
    □ Vitiello, R. B.; J. M. Macak, A. Ghicov, H. Tsuchiya, L. F. P. Dick and P. Schmuki, “N-Doping of Anodic TiO2 Nanotubes Using Heat Treatment in Ammonia” Electrochemistry Communications, 8, 544-548(2006).

    □ Wang, X. W.; G.. T. Fei, X. J. Xu, Z. Jin and L. D. Zhang “Size Dependent Orientation Growth of Large-Area Ordered Ni Nanowires Arrays” J.Phys.Chem.B., 109, 24326-24330(2005).
    □ Wasserscheid, P. and T. Welton, Ionic liquids in synthesis. Weinheim: Wiley-VCH Verlag (2003).
    □ Wu, J. M.; H. C. Shih and W. T. Wu, “Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation” Chemical Physics Letters, 413, 490-494(2005)
    □ Xiang, B.; Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu and D. P. Yu, “Synthesis and field emission properties of TiSi2¬ nanowires” Applied Physics Letters, 86, 243103(2005)
    □ Xiang, B.; Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang and D. P. Yu, “Field-emission properties of TiO2 nanowire arrays” J. Phys. D: Appl. Phys, 38, 1152-1155(2005)
    □ Xie, Y. “Photoelectrochemical Application of Nanotubular Titania Photoanode” Electrochimica Acta, 51, 3399-3406(2005).
    □ Xue, X. Y.; L. M. Li, H. C. Yu, Y. J. Chen, Y. G. Wand and T. H. Wang, “Extremely stable field emission from AlZnO nanowire arrays” Applied Physics Letters, 89, 043118(2006)
    □ Yang, L. and Q. Cai, “Size-Controllable Fabrication of Noble Metal Nanonets Using a TiO2 Template” Inorganic Chemistry, 45, 9616-9618(2006)
    □ Yu, X.; Y. Li, W. Ge, Q. Yang, N. Zhu and K. Kalantar-zadeh, “Formation of Nanoporous Titanium Oxide Films on Silicon Substrate Using an Anodization Process” Nanotechnology, 17, 808-814(2006).

    □ Zhao, J. L.; X. H. Wang, R. Z. Chen, and L. Li, “Fabrication of Titanium Oxide Nanotube Arrays by Anodic Oxidation” Solid State Communications, 134, 705-710(2005).
    □ Zhong, D. Y.; G. Y. Zhang and S. Liu, “Universal field-emission model for carbon nanotubes on a metal tip” Applied Physics Letters, 80, 3, 506-508(2002)
    □ Zwilling, V.; M. Aucouturier, and E. Darque- Ceretti, “Anodic Oxidation of Titanium and Ti6V Alloy in Chromic Media. An Electrochemical Approach” Electrochimica Acta, 45, 921-929(1999)
    □ 賴俊村, “場發射顯示器簡介” 物理雙月刊(1999)
    □ 蔡大翔, “氧化釕氧化銥奈米構造相研究簡介” 化工,52,4,2-10(2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE