簡易檢索 / 詳目顯示

研究生: 謝怡慧
Hsieh, Yi-Heui
論文名稱: 結合螢光量子點和免疫磁珠偵測特定細胞與其在癌症上的應用
Coupling with quantum dots and immunomagnetic separation for application in cancer cells detection
指導教授: 吳文桂
Wu, Wen-Guey
梁耕三
Liang, Keng-S
賴麗珍
Lai, Lee-Jene
口試委員: 劉士任
Liu, S.-J.
冷治湘
Leng, C.-H.
許博淵
Shew, B.-Y.
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 131
中文關鍵詞: 毒殺T細胞量子點免疫磁珠鼻咽癌病毒
外文關鍵詞: Cytotoxic T cell, Quantum dots, Magnetic beads, Epstein-Barr Virus
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一種快速且靈敏的方法以應用於檢測低濃度的
    腫瘤細胞和特定的毒殺 T 細胞。在此方法中,特定 T 淋巴球的細
    胞膜上可同時被偵測到兩個生物標記受體。其中一個生物特定標記受
    體與免疫磁珠結合後可被分離出來,而另一個生物標記受體則與螢光
    量子點結合後可以螢光量測。特定T 淋巴球由混和細胞分離出來之後
    可再由螢光量測其強度而對特定T 淋巴球數目加以定量。實驗數據指
    出特定的T 淋巴球細胞於紅血球的混和細胞中,經與螢光量子點結合
    和免疫磁珠分離後,最低可以偵測到濃度約5 X10-7 的特定T 淋巴球
    細胞,且實驗流程只需4 小時。此方法也應用於偵測對Epstein-Barr
    Virus 具有特異性的毒殺T 細胞。本實驗具有包括樣品容易製備,低
    成本,偵測時間時間短,和靈敏度高等眾多優勢。在未來的發展上,
    此方法將可被利用於癌症的早期診斷檢查和術後的追蹤檢查上。


    A rapid and sensitive method for detecting low concentration of
    cancer cells or specific cytotoxic cells is proposed. In this method, two
    biomarkers of specific T cells are used for detection simultaneously. One
    biomarker is conjugated with magnetic beads to separate specific T cell
    from the mixed cells and the other biomarker, associated with quantum
    dots, is used by detection the emission of fluorescence. The different
    population of specific T cell can be quantified using the relationship
    between the QD fluorescence intensity and the cell frequency following
    the magnetic separation. Non-specific adsorption and cross-reaction of
    QD625–streptavidin on a T cell membrane are prevented.
    Additionally, when a total of 108 cells are mixed, neither B cells
    nor red blood cells interfere with the detection of T cells. Moreover, the
    total detection time is less than 15 min, even though the frequency of
    specific T cells is as low as 5x10-7. Furthermore, the CTLs specific to
    Epstein-Barr Virus (EBV) can be detected at low concentration by using
    QD625–streptavidin conjugated with MHC-tetramer specific to EBV and
    immuno-magnetic beads
    The numerous advantages of detecting specific cells at low
    concentration using the presented method include ease of preparation,
    low cost, fast detection, and high sensitivity. The proposed system can be
    adopted to detect circulating tumor cells in the early stages for diagnosis
    or prognosis.

    Introduction 1 Introduction……………………………………………………...16-21 2 Motivation……………………………………………………….21-22 3 Figures…………………………………………………………...23-24 Chapter 1: Materials and methods 1.1 Materials…………………………………………………………..25 1.2 Cell culture…………………………………………………….26-27 1.3 Experimental setup…………………………………………….27-30 1.3.1 Fluorescent spectrum system………………………..27-28 1.3.2 Fluorescent image system………………………………28 1.3.3 Scanning electron microscopy images system………28-29 1.3.4 Flow cytometry sysrem…………………………………29 1.3.5 Enzyme-Linked ImmunoSpots (ELISPOT)…………29-30 1.4 Figures…………………………………………………………31-33 Chapter 2: The fluorescent property of Quantum dot related with buffers and pH value 2.1 Introduction……………………………………………………34-36 2.2 Methods…………………………………………………………...36 2.2.1 Sample preparation……………………………………..36 2.2.2 Optical system………………………………………….36 2.3 Results and Discussion………………………………………...37-39 2.3.1 Comparison thefluorescent stability and intensity of FITC and QDs625……………………..…………37-38 2.3.2 QDs625 fluorescence in PBS and borate buffer…….38-39 2.3.3 QDs625 fluorescence at different pH levels……………39 2.4 Conclusion………………………………………………………...40 2.5 Figures…………………………………………………………41-46 Chapter 3: Rare cell detection by quantum dot probes and fluorescence analysis in mixed red blood cells 3.1 Introduction……………………………………………………47-48 3.2 Methods…………………………………………………………...49 3.2.1 Sample preparation……………………………………..49 3.2.2 Optical system………………………………………….49 3.3 Results and Discussion………………………………………...50-53 3.3.1 Specific detection of T cells with the probe of QDs………………………………………………50-51 3.3.2 Cross-reaction of QDs625–T cells with red blood cells………………………………………………51 3.3.3 Detection of specific cells using quantum dot probe fluorescence in the single cell line…………………..51-52 3.3.4 Detection of specific cells using quantum dot probe fluorescence in mixed cells…………………………52-53 3.4 Conclusion……………………………………………………….54 3.5 Figures………………………………………………………..55-62 Chapter 4: Detection of T-specific lymphocytes based on quantum dot probe fluorescence analysis and immunomagnetic separation in a mixture of B lymphocytes and RBCs 4.1 Introduction……………………………………………………63-64 4.2 Methods………………………………………………………..64-65 4.2.1 Sample preparation………………………………….64-65 4.2.2 Optical system………………………………………….65 4.2.3 Scanning electron microscopy………………………….65 4.3 Results and Discussion………………………………………...66-70 4.3.1 The nonspecific binding of T-cells and QD- streptavidin with immunomagnetic separation………...66 4.3.2 Specific binding of T-cells from biotinylated anti-human CD3 and anti-human CD4-conjugated magnetic beads……………………………………..66-67 4.3.3 Cross-reaction of QD625-T cells-MB cells with red blood cells and B cells………………………....67-68 4.3.4 SEM images of T cell and T-cell-conjugated anti-human CD4 magnetic beads………………..…..68-69 4.3.5 Detection different population of T cells by mixing with RBC, PBMC, and B cells in total of 108 cells…...…………………………………………….69-70 4.4 Conclusion……………………………………………………….71 4.5 Figures………………………………………………………..72-79 Chapter 5: Detection of EBV-specific T cells based on quantum dot probe fluorescence analysis and immunomagnetic separation in PBMCs from healthy donors 5.1 Introduction…………………………………………………...80-84 5.1.1 A novel approach for detecting specific T cells: Recombinant restricted MHC as specific antigen….80-81 5.1.2 Epstein-Barr virus…………………………………81-84 5.2 Methods………………………………………………………84-85 5.2.1 Sample preparation………………………………..84-85 5.2.2 Optical system………………………………………..85 5.2.3 Flow cytometry……………………………………….85 5.2.4 Enzyme-Linked Immunospots (ELISPOT)…………..85 5.3 Results and Discussion……………………………………….86-93 5.3.1 Fluorescent spectrum of specificity of QDs625- MHC- EBV LMP2 tetramer with EBV-specific CTLs………………………………………………..86-87 5.3.2 Fluorescence images of the QDs625-MHC-EBV- LMP2 tetramer with EBV-specific CTLs……………...87 5.3.3 Specificity of the QD625-MHC epitope tetramer for CTLs and whole blood of the corresponding HLA type………………..........................................87-88 5.3.4 Detection of CTLs specific to the LMP2 epitope of EBV………………………………………………88-89 5.3.5 Percentage of cytotoxic T lymphocytes specific to the LMP2 epitope of EBV in healthy volunteers..……………………………………..…90-93 5.3.5.1 Method of QD fluorescence and immunomagnetic beads………………….90-91 5.3.5.2 Method of flow cytometry…………………...91 5.3.5.3 Method of ELISPOT……………………..91-93 5.4 Conclusion……………………………………………………….93 5.5 Figures……………………………………………………….94-104 5.6 Tables………………………………………………………105-107 Future Work……………………………………………………...108 Appendix : Living cell damage by exposure to VUV radiation B.1 Introduction..........................................................................109-110 B.2 Materials and Methods…………………………………………111 B.2.1 Materials………………………………………………111 B.2.2 Methods and experimental setup……………………...111 B.3 Results and Discussion ……………………………….……112-113 B.3.1 Spectra of T cells that was excited by VUV radiation continuously…………………………………………112 B.3.2 Spectra of T cells that was excited by VUV radiation without continuous exposure…….……112-113 B.4 Conclusion…………………………………………………..…113 B.5 Figures.................................................................................114-118 Reference……………………………………………………...119-131

    1. Johnson LV, Walsh ML, Bockus BJ, Chen LB.
    Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. The Journal of Cell Biology 1981,88:526-535.
    2. Buschmann V, Weston KD, Sauer M. Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjug Chem 2003,14:195-204.
    3. Matsumoto Y, Sasaoka N, Tsuchida T, Fujiwara T, Nagao S, Ohmoto T. Fluorescent dye rhodamine 6G as a molecular probe to study drug resistance of C6 rat glioma cells. Journal of Neuro-Oncology 1992,13:217-222.
    4. Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovascular Research 2000,46:126-138.
    5. Eggeling C, Widengren J, Rigler R, Seidel CAM. Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection:  Evidence of Two-Step Photolysis. Analytical Chemistry 1998,70:2651-2659.
    6. Hoebe RA, Van Oven CH, Gadella TWJ, Dhonukshe PB, Van Noorden CJF, Manders EMM. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nature Biotechnology 2007,25:249-253.
    7. Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotech 2001,19:631-635.
    8. Klarreich E. Biologists join the dots. Nature 2001,413:450-452.
    9. Wilson WL, Szajowski PF, Brus LE. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 1993,262:1242-1244.
    10. Yoffe AD. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Advances in Physics 1993,42:173-262.
    11. Rodrigues PAM, Tamulaitis G, Yu PY, Risbud SH. Size selective photoluminescence excitation spectroscopy in CdSe nanocrystals. Solid State Communications 1995,94:583-587.
    12. Norris DJ, Efros AL, Rosen M, Bawendi MG. Size dependence of exciton fine structure in CdSe quantum dots. Physical Review B 1996,53:16347.
    13. Invitrogen. Qdot® Streptavidin Conjugates. http://www.invitrogen.com/site/us/en/home.html.
    14. Alivisatos AP. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996,271:933-937.
    15. Nirmal M, Brus L. Luminescence Photophysics in Semiconductor Nanocrystals. Accounts of Chemical Research 1998,32:407-414.
    16. Chan WC. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998,281:2016-2018.
    17. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology 2002,21:41-46.
    18. Immunology, kuby. 5 edition.
    19. Gangopadhyay NN, Shen H, Landreneau R, Luketich JD, Schuchert MJ. Isolation and tracking of a rare lymphoid progenitor cell which facilitates bone marrow transplantation in mice. Journal of Immunological Methods 2004,292:73-81.
    20. Flatmark K, Bjørnland K, Johannessen HO, Hegstad E, Rosales R, Hårklau L, et al. Immunomagnetic Detection of Micrometastatic Cells in Bone Marrow of Colorectal Cancer Patients. Clinical Cancer Research 2002,8:444-449.
    21. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a Cancer Stem Cell in Human Brain Tumors. Cancer Research 2003,63:5821-5828.
    22. Zauderer M, Singer A. Limiting dilution analysis of primary cytotoxic T-cell precursors. Journal of Immunological Methods 1997,208:85-90.
    23. Gross HJ, Verwer B, Houck D, Hoffman RA, Recktenwald D. Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(-7). Proceedings of the National Academy of Sciences 1995,92:537-541.
    24. Fornas O, Garcia J, Petriz J. Flow cytometry counting of CD34+ cells in whole blood. Nat Med 2000,6:833-836.
    25. Bajaj S, Welsh JB, Leif RC, Price JH. Ultra-rare-event detection performance of a custom scanning cytometer on a model preparation of fetal nRBCs. Cytometry 2000,39:285-294.
    26. Sha MY, Xu H, Natan MJ, Cromer R. Surface-Enhanced Raman Scattering Tags for Rapid and Homogeneous Detection of Circulating Tumor Cells in the Presence of Human Whole Blood. Journal of the American Chemical Society 2008,130:17214-17215.
    27. Pahar B. Detection of antigen-specific T cell interferon γ expression by ELISPOT and cytokine flow cytometry assays in rhesus macaques. Journal of Immunological Methods 2003,282:103-115.
    28. Kraeft S-K, Ladanyi A, Galiger K, Herlitz A, Sher AC, Bergsrud DE, et al. Reliable and Sensitive Identification of Occult Tumor Cells Using the Improved Rare Event Imaging System. Clinical Cancer Research 2004,10:3020-3028.
    29. Steurer M, Kern J, Zitt M, Amberger A, Bauer M, Gastl G, et al. Quantification of circulating endothelial and progenitor cells: comparison of quantitative PCR and four-channel flow cytometry. BMC Res Notes 2008,1:71.
    30. Alix-Panabieres C, Rebillard X, Brouillet J-P, Barbotte E, Iborra F, Segui B, et al. Detection of Circulating Prostate-Specific Antigen-Secreting Cells in Prostate Cancer Patients. Clin Chem 2005,51:1538-1541.
    31. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 1991,352:595-600.
    32. Schneider J, Gilbert SC, Blanchard TJ, Hanke T, Robson KJ, Hannan CM, et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 1998,4:397-402.
    33. Herr W, Schneider J, Lohse AW, Meyer zum Büschenfelde K-H, Wölfel T. Detection and quantification of blood-derived CD8+ T lymphocytes secreting tumor necrosis factor [alpha] in response to HLA-A2.1-binding melanoma and viral peptide antigens. Journal of Immunological Methods 1996,191:131-142.
    34. de Jager W, te Velthuis H, Prakken BJ, Kuis W, Rijkers GT. Simultaneous Detection of 15 Human Cytokines in a Single Sample of Stimulated Peripheral Blood Mononuclear Cells. Clin. Diagn. Lab. Immunol. 2003,10:133-139.
    35. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJD, Zajac AJ, Miller JD, et al. Counting Antigen-Specific CD8 T Cells: A Reevaluation of Bystander Activation during Viral Infection. Immunity 1998,8:177-187.
    36. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996,274:94-96.
    37. Schatz PJ. Use of Peptide Libraries to Map the Substrate Specificity of a Peptide-Modifying Enzyme: A 13 Residue Consensus Peptide Specifies Biotinylation in Escherichia coli. Nat Biotech 1993,11:1138-1143.
    38. Appay V, Rowland-Jones SL. The assessment of antigen-specific CD8+ T cells through the combination of MHC class I tetramer and intracellular staining. Journal of Immunological Methods 2002,268:9-19.
    39. Novak EJ, Liu AW, Nepom GT, Kwok WW. MHC class II tetramers identify peptide-specific human CD4(+) T cells proliferating in response to influenza A antigen. J Clin Invest 1999,104:R63-67.
    40. Lin CT, Lin CR, Tan GK, Chen W, Dee AN, Chan WY. The mechanism of Epstein-Barr virus infection in nasopharyngeal carcinoma cells. Am J Pathol 1997,150:1745-1756.
    41. Busson P, McCoy R, Sadler R, Gilligan K, Tursz T, Raab-Traub N. Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol 1992,66:3257-3262.
    42. Rickinson AB, Lee SP, Steven NM. Cytotoxic T lymphocyte responses to Epstein-Barr virus. Curr Opin Immunol 1996,8:492-497.
    43. Altun M, Fandi A, Dupuis O, Cvitkovic E, Krajina Z, Eschwege F. Undifferentiated nasopharyngeal cancer (UCNT): Current diagnostic and therapeutic aspects. International Journal of Radiation Oncology*Biology*Physics 1995,32:859-877.
    44. Choo R, Tannock I. Chemotherapy for recurrent or metastatic carcinoma of the nasopharynx. A review of the Princess Margaret Hospital experience. Cancer 1991,68:2120-2124.
    45. Brooke G, Rossetti T, Pelekanos R, Ilic N, Murray P, Hancock S, et al. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. British Journal of Haematology 2009,144:571-579.
    46. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005,4:435-446.
    47. Bruchez Jr M. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998,281:2013-2016.
    48. Ma Y, Yang C, Li N, Yang X. A sensitive method for the detection of catecholamine based on fluorescence quenching of CdSe nanocrystals. Talanta 2005,67:979-983.
    49. Wang L, Chen H, Wang L, Li L, Xu F, Liu J, et al. Preparation and Application of a Novel Composite Nanoparticle as a Protein Fluorescence Probe. Analytical Letters 2004,37:213-223.
    50. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotech 2003,21:41-46.
    51. Dubertret B. Quantum dots: DNA detectives. Nat Mater 2005,4:797-798.
    52. Liu F, Liang Y, Cao C, Zhou N. Theoretical prediction of the Kovat's retention index for oxygen-containing organic compounds using novel topological indices. Analytica Chimica Acta 2007,594:279-289.
    53. Lee LY, Ong SL, Hu JY, Ng WJ, Feng Y, Tan X, et al. Use of Semiconductor Quantum Dots for Photostable Immunofluorescence Labeling of Cryptosporidium parvum. Applied and Environmental Microbiology 2004,70:5732-5736.
    54. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science 2002,298:1759-1762.
    55. Gao M, Kirstein S, Möhwald H, Rogach AL, Kornowski A, Eychmüller A, et al. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. The Journal of Physical Chemistry B 1998,102:8360-8363.
    56. Zhang H, Zhou Z, Yang B, Gao M. The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles. The Journal of Physical Chemistry B 2002,107:8-13.
    57. Susha AS, Javier AM, Parak WJ, Rogach AL. Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006,281:40-43.
    58. Yun Z, Zhengtao D, Jiachang Y, Fangqiong T, Qun W. Using cadmium telluride quantum dots as a proton flux sensor and applying to detect H9 avian influenza virus. Analytical Biochemistry 2007,364:122-127.
    59. Sun YH, Liu YS, Vernier PT, Liang CH, Chong SY, Marcu L, et al. Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells. Nanotechnology 2006,17:4469-4476.
    60. Liu Y-S, Sun Y, Vernier PT, Liang C-H, Chong SYC, Gundersen MA. pH-Sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells. The Journal of Physical Chemistry C 2007,111:2872-2878.
    61. Chen Y, Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes. Analytical Chemistry 2002,74:5132-5138.
    62. Chen J-L, Zhu C-Q. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta 2005,546:147-153.
    63. Melamed MD, Green NM. Avidin. 2. Purification and Composition. Biochem J 1963,89:591-599.
    64. Green NM. Avidin. 1. The Use of (14-C)Biotin for Kinetic Studies and for Assay. Biochem J 1963,89:585-591.
    65. Ijiro K, Ringsdorf H, Birch-Hirschfeld E, Hoffmann S, Schilken U, Strube M. Protein−DNA Double and Triple Layers:  Interaction of Biotinylated DNA Fragments with Solid Supported Streptavidin Layers. Langmuir 1998,14:2796-2800.
    66. Kuberan B, Gunay NS, Dordick JS, Linhardt RJ. Preparation and isolation of neoglycoconjugates using biotin-streptavidin complexes. Glycoconjugate Journal 1999,16:271-281.
    67. Aslan FM. Engineered single-chain dimeric streptavidins with an unexpected strong preference for biotin-4-fluorescein. Proceedings of the National Academy of Sciences 2005,102:8507-8512.
    68. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, et al. Avidin:  A Natural Bridge for Quantum Dot-Antibody Conjugates. Journal of the American Chemical Society 2002,124:6378-6382.
    69. R.N MDGILHMJLP. Cell biotinylation provides a sensitive and effective detection technique for cellular adhesion assays: comparison with existing methods. Journal of Immunological Methods 2001,253:57-68.
    70. Gao X, Dave SR. Quantum Dots for Cancer Molecular Imaging. In: Bio-Applications of Nanoparticles. Edited by Chan WCW: Springer New York; 2007. pp. 57-73.
    71. Ghasemi Y, Peymani P, Afifi S. Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed 2009,80:156-165.
    72. Cordero SR, Carson PJ, Estabrook RA, Strouse GF, Buratto SK. Photo-Activated Luminescence of CdSe Quantum Dot Monolayers. The Journal of Physical Chemistry B 2000,104:12137-12142.
    73. Sato K, Kojima S, Hattori S, Chiba T, Ueda-Sarson K, Torimoto T, et al. Controlling surface reactions of CdS nanocrystals: photoluminescence activation, photoetching and photostability under light irradiation. Nanotechnology 2007,18:465702.
    74. Wang Y, Tang Z, Correa-Duarte MA, Pastoriza-Santos I, Giersig M, Kotov NA, et al. Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. The Journal of Physical Chemistry B 2004,108:15461-15469.
    75. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protocols 2007,2:1152-1165.
    76. Smith AM, Dave S, Nie S, True L, Gao X. Multicolor quantum dots for molecular diagnostics of cancer. Expert Review of Molecular Diagnostics 2006,6:231-244.
    77. Liu J, Lau SK, Varma VA, Kairdolf BA, Nie S. Multiplexed detection and characterization of rare tumor cells in Hodgkin's lymphoma with multicolor quantum dots. Anal Chem 2010,82:6237-6243.
    78. Liu T-C, Wang J-H, Wang H-Q, Zhang H-L, Zhang Z-H, Hua X-F, et al. Bioconjugate recognition molecules to quantum dots as tumor probes. Journal of Biomedical Materials Research Part A 2007,83A:1209-1216.
    79. Ghazani AA, Lee JA, Klostranec J, Xiang Q, Dacosta RS, Wilson BC, et al. High Throughput Quantification of Protein Expression of Cancer Antigens in Tissue Microarray Using Quantum Dot Nanocrystals. Nano Letters 2006,6:2881-2886.
    80. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 2006,19:1181-1191.
    81. Tomoyasu T. Improvement of the Immunomagnetic Separation Method Selective for Escherichia coli O157 Strains. Appl. Environ. Microbiol. 1998,64:376-382.
    82. Tokairin T, Nishikawa Y, Doi Y, Watanabe H, Yoshioka T, Su M, et al. A highly specific isolation of rat sinusoidal endothelial cells by the immunomagnetic bead method using SE-1 monoclonal antibody. Journal of Hepatology 2002,36:725-733.
    83. Narasipura SD, Wojciechowski JC, Duffy BM, L. Liesveld J, King MR. Purification of CD45+ hematopoietic cells directly from human bone marrow using a flow-based P-selectin-coated microtube. American Journal of Hematology 2008,83:627-629.
    84. Kekarainen T, Mannelin S, Laine J, Jaatinen T. Optimization of immunomagnetic separation for cord blood-derived hematopoietic stem cells. BMC Cell Biology 2006,7:30.
    85. Goon PKY, Boos CJ, Stonelake PS, Blann AD, Lip GYH. Detection and quantification of mature circulating endothelial cells using flow cytometry and immunomagnetic beads: A methodological comparison. Thrombosis and Haemostasis 2006.
    86. Neale GAM, Coustan-Smith E, Stow P, Pan Q, Chen X, Pui CH, et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2004,18:934-938.
    87. Komitowski D, Paweletz N, Goerttler K. Scanning electron microscopic studies of dissociated thymic cells in early stages of Rauscher leukemia. Journal of Cancer Research and Clinical Oncology 1974,82:269-275.
    88. Polliack A, Lampen N, Clarkson BD, de Harven E, Bentwich Z, Siegal FP, et al. IDENTIFICATION OF HUMAN B AND T LYMPHOCYTES BY SCANNING ELECTRON MICROSCOPY. The Journal of Experimental Medicine 1973,138:607-624.
    89. Alexander E, Sanders S, Braylan R. Purported difference between human T- and B-cell surface morphology is an artefact. Nature 1976,261:239-241.
    90. Lin PS, Cooper AG, Wortis HH. Scanning electron microscopy of human T-cell and B-cell rosettes. The New England journal of medicine 1973,289:548-551.
    91. Germain RN. MHC-dependent antigen processing and peptide presentation: Providing ligands for T lymphocyte activation. Cell 1994,76:287-299.
    92. Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 1994,12:259-293.
    93. McHeyzer-Williams MG, Davis MM. Antigen-specific development of primary and memory T cells in vivo. Science 1995,268:106-111.
    94. Doherty PC, Topham DJ, Tripp RA. Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol Rev 1996,150:23-44.
    95. Selin LK, Vergilis K, Welsh RM, Nahill SR. Reduction of otherwise remarkably stable virus-specific cytotoxic T lymphocyte memory by heterologous viral infections. J Exp Med 1996,183:2489-2499.
    96. Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B, et al. Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol 1998,16:523-544.
    97. Garboczi DN, Hung DT, Wiley DC. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci U S A 1992,89:3429-3433.
    98. Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O'Callaghan CA, et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus In vivo. J Exp Med 1998,187:1395-1402.
    99. Wilson JD, Ogg GS, Allen RL, Goulder PJ, Kelleher A, Sewell AK, et al. Oligoclonal expansions of CD8(+) T cells in chronic HIV infection are antigen specific. J Exp Med 1998,188:785-790.
    100. Faint JM, Annels NE, Curnow SJ, Shields P, Pilling D, Hislop AD, et al. Memory T cells constitute a subset of the human CD8+CD45RA+ pool with distinct phenotypic and migratory characteristics. J Immunol 2001,167:212-220.
    101. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999,5:677-685.
    102. Yee C, Savage PA, Lee PP, Davis MM, Greenberg PD. Isolation of High Avidity Melanoma-Reactive CTL from Heterogeneous Populations Using Peptide-MHC Tetramers. The Journal of Immunology 1999,162:2227-2234.
    103. Macaubas C, Wahlstrom J, Galvão da Silva AP, Forsthuber TG, Sønderstrup G, Kwok WW, et al. Allergen-Specific MHC Class II Tetramer+ Cells Are Detectable in Allergic, but Not in Nonallergic, Individuals. The Journal of Immunology 2006,176:5069-5077.
    104. Cohen CJ, Denkberg G, Lev A, Epel M, Reiter Y. Recombinant antibodies with MHC-restricted, peptide-specific, T-cell receptor-like specificity: new tools to study antigen presentation and TCR-peptide-MHC interactions. J Mol Recognit 2003,16:324-332.
    105. Denkberg G, Reiter Y. Recombinant antibodies with T-cell receptor-like specificity: Novel tools to study MHC class I presentation. Autoimmunity Reviews 2006,5:252-257.
    106. Barnd DL, Lan MS, Metzgar RS, Finn OJ. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proceedings of the National Academy of Sciences 1989,86:7159-7163.
    107. Eckels DD. MHC: function and implication on vaccine development. Vox Sang 2000,78 Suppl 2:265-267.
    108. Epstein MA, Achong BG, Barr YM. Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1964,1:702-703.
    109. Rooney CM, Ng CYC, Loftin S, Smith CA, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. The Lancet 1995,345:9-13.
    110. Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996,2:551-555.
    111. Teo PM, Kwan WH, Lee WY, Leung SF, Johnson PJ. Prognosticators determining survival subsequent to distant metastasis from nasopharyngeal carcinoma. Cancer 1996,77:2423-2431.
    112. Hong Kong Government. SAR, China, 2000. Hong Kong Cancer Registry Report
    113. Huang SC. Nasopharyngeal cancer: a review of 1605 patients treated radically with cobalt 60. Int J Radiat Oncol Biol Phys 1980,6:401-407.
    114. Yu MC. Nasopharyngeal carcinoma: epidemiology and dietary factors. IARC Sci Publ 1991:39-47.
    115. Chang KL, Chen YY, Shibata D, Weiss LM. Description of an in situ hybridization methodology for detection of Epstein-Barr virus RNA in paraffin-embedded tissues, with a survey of normal and neoplastic tissues. Diagn Mol Pathol 1992,1:246-255.
    116. Khanna R, Moss DJ, Burrows SR. Vaccine strategies against Epstein-Barr virus-associated diseases: lessons from studies on cytotoxic T-cell-mediated immune regulation. Immunol Rev 1999,170:49-64.
    117. Pathmanathan R, Prasad U, Chandrika G, Sadler R, Flynn K, Raab-Traub N. Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein-Barr virus-infected neoplasia. Am J Pathol 1995,146:1355-1367.
    118. Murray RJ, Kurilla MG, Brooks JM, Thomas WA, Rowe M, Kieff E, et al. Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 1992,176:157-168.
    119. Lee SP, Chan AT, Cheung ST, Thomas WA, CroomCarter D, Dawson CW, et al. CTL control of EBV in nasopharyngeal carcinoma (NPC): EBV-specific CTL responses in the blood and tumors of NPC patients and the antigen-processing function of the tumor cells. J Immunol 2000,165:573-582.
    120. Lee S, Tierney R, Thomas W, Brooks J, Rickinson A. Conserved CTL epitopes within EBV latent membrane protein 2: a potential target for CTL-based tumor therapy. The Journal of Immunology 1997,158:3325-3334.
    121. Lee TD, Zhao TM, Mickey R, Sun YP, Lee G, Song CX, et al. The polymorphism of HLA antigens in the Chinese. Tissue Antigens 1988,32:188-208.
    122. Lautscham G, Mayrhofer S, Taylor G, Haigh T, Leese A, Rickinson A, et al. Processing of a multiple membrane spanning Epstein-Barr virus protein for CD8(+) T cell recognition reveals a proteasome-dependent, transporter associated with antigen processing-independent pathway. J Exp Med 2001,194:1053-1068.
    123. Whitney BM, Chan ATC, Rickinson AB, Lee SP, Lin CK, Johnson PJ. Frequency of Epstein-Barr virus-specific cytotoxic T lymphocytes in the blood of Southern Chinese blood donors and nasopharyngeal carcinoma patients. Journal of Medical Virology 2002,67:359-363.
    124. Mo WN, Tang AZ, Zhou L, Huang GW, Wang Z, Zeng Y. Analysis of Epstein-Barr viral DNA load, EBV-LMP2 specific cytotoxic T-lymphocytes and levels of CD4+CD25+ T cells in patients with nasopharyngeal carcinomas positive for IgA antibody to EBV viral capsid antigen. Chin Med J (Engl) 2009,122:1173-1178.
    125. Pantel K, Otte M. Occult micrometastasis: enrichment, identification and characterization of single disseminated tumour cells. Seminars in Cancer Biology 2001,11:327-337.
    126. Ananthaswamy HN, Pierceall WE. MOLECULAR MECHANISMS OF ULTRAVIOLET RADIATION CARCINOGENESIS. Photochemistry and Photobiology 1990,52:1119-1136.
    127. Dumaz N, Drougard C, Sarasin A, Daya-Grosjean L. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proc Natl Acad Sci U S A 1993,90:10529-10533.
    128. Nakazawa H, English D, Randell PL, Nakazawa K, Martel N, Armstrong BK, et al. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proceedings of the National Academy of Sciences 1994,91:360-364.
    129. Sontag W, Dertinger H. Energy requirements for damaging DNA molecules. III. The mechanisms of inactivation of bacteriophage chiX 174 DNA by vacuum ultra-violet radiation. Int J Radiat Biol Relat Stud Phys Chem Med 1975,27:543-552.
    130. Hidea K, Hayakawa Y, Ito A, Kobayashi K, Ito T. WAVELENGTH DEPENDENCE OF THE FORMATION OF SINGLE-STRAND BREAKS AND BASE CHANGES IN DNA BY THE ULTRAVIOLET RADIATION ABOVE 150 nm. Photochemistry and Photobiology 1986,44:379-383.
    131. Matsunaga T, Hieda K, Nikaido O. WAVELENGTH DEPENDENT FORMATION OF THYMINE DIMERS AND (6-4)PHOTOPRODUCTS IN DNA BY MONOCHROMATIC ULTRAVIOLET LIGHT RANGING FROM 150 TO 365 nm. Photochemistry and Photobiology 1991,54:403-410.
    132. Kramer GF, Norman HA, Krizek DT, Mirecki RM. influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry 1991,30:2101-2108.
    133. Christ K, Rüttinger H-H, Höpfner M, Rothe U, Bendas G. The Detection of UV-induced Membrane Damages by a Combination of Two Biosensor Techniques. Photochemistry and Photobiology 2005,81:1417-1423.
    134. Buja LM, Eigenbrodt ML, Eigenbrodt EH. Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch Pathol Lab Med 1993,117:1208-1214.
    135. Kensal E. van Holde WCJ, P. Shing Ho. Principles of physical Biochemistry (2nd Edition). 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE