簡易檢索 / 詳目顯示

研究生: 戴良州
Dai, Liang-Jhou
論文名稱: 基於電壓窄波注入之切換式磁阻馬達無位置感測控制
POSITION SENSORLESS CONTROL OF SWITCHED-RELUCTANCE MOTOR DRIVE BASED ON NARROW VOLTAGE PULSE INJECTION
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 157
中文關鍵詞: 切換式磁阻馬達無位置感測控制窄波注入切換式整流器功因校正降-升壓轉換器升壓電流控制速度控制數位訊號處理器
外文關鍵詞: Switched-reluctance motor, position sensorless control, narrow pulse injection, switch-mode rectifier, power factor correction, buck-boost converter, voltage boosting, current control, speed control, DSP
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製以數位訊號處理器為主具降-升壓切換式整流器前級之無位置感測切換式磁阻馬達驅動系統。為瞭解切換式磁阻馬達之驅動控制關鍵實務,首先設計建構一標準切換式磁阻馬達驅動系統,並實測評估其性能。藉由適當設計之電力電路、感測電路、電流控制脈寬調變機構及動態控制,所建驅動系統具良好之操控特性。接著,建構一降-升壓切換式整流器前級以建立可升壓及具良好調節特性之直流鏈電壓,以改善馬達驅動系統之驅控特性並具良好交流入電品質,文中並實測比較切換式整流器操作於不連續導通模式和連續導通模式下之操控性能。為達控制機構之小型化,以一共通數位訊號處理器實現切換式磁阻馬達驅動系統及其切換式整流器前級之所有數位控制法則。

    最後,本文開發基於電壓窄波注入之切換式磁阻馬達無位置感測控制技巧。經由數位訊號處理器內建之脈寬調變通道,注入適當頻率及導通時間之脈波電壓於馬達之非激磁相線圈,由感測之轉子位置調幅波狀線圈電流經訊號處理獲得估測之霍耳訊號。在無位置感測操控上,馬達先以步進馬達方式起動,俟建立適當轉速後,即切換至切換式磁阻馬達操作模式。在速度迴授控制方面,馬達之轉速利用所提之估測機構由感測之四相線圈電流估算得之。此外,應用換相前移技巧以提升無位置感測切換式磁阻馬達之轉矩產生能力,亦即強化共轉矩-安培比。一些實測評估顯示所建構之無位置感測切換式磁阻馬達驅動系統具寬廣速度範圍之良好驅控性能。


    This thesis presents the development of a digital signal processor (DSP) based position sensorless switched reluctance motor (SRM) drive with buck-boost switch-mode rectifier (SMR) front-end. First, for comprehending the key issues in making the SRM driving control, a standard SRM drive is designed, implemented and evaluated. Satisfactory operating characteristics are obtained via properly treating its power circuit, sensing scheme, current controlled PWM switching scheme and dynamic control. Next, to let the developed SRM drive fed from mains have improved operating performance, a buck-boost SMR front-end is employed to establish boostable and well-regulated DC-link voltage with good AC input power quality. The SMRs under both discontinuous conduction mode (DCM) and continuous conduction mode (CCM) operations are comparatively evaluated their performances. The SRM drive and SMR front-end are realized in a common DSP to achieve the miniaturization of control environment.

    Finally, a novel SRM position sensorless control approach based on narrow pulse voltage injection is developed. The voltage pulses with suited frequency and duration are injected into the unenergized phase winding via the embedded DSP PWM channel. The resulted amplitude modulated winding currents are sensed and signal processed to yield an observed Hall signal. In sensorless control operation, the motor is initially started in stepping motor mode. As the speed is established to a reasonably high value, the operation is changed to switched-reluctance motor mode using the observed Hall signal. And the speed feedback control is conducted using the observed speed, which is obtained from the sensed four winding currents. Moreover, the commutation advanced shift is applied to yield the improved torque generating capability, i.e., the enhanced torque-per-ampere characteristics. The experimental evaluation shows that the developed position sensorless controlled SRM drive possesses good driving performance under a reasonably wide speed range.

    CHAPTER 1 INTRODUCTION CHAPTER 2 DSP-BASED STANDARD SWITCHED-RELUCTANCE MOTOR DRIVE 2.1 Introduction 2.2 Motor Structure and Switching Operation 2.3 Physical Modeling 2.4 Some Typical Converters 2.5 Capability Overview of Some Existing DSPs 2.6 Establishment of an Experimental Standard DSP-based SRM Drive 2.6.1 System Configuration 2.6.2 Interface Circuits 2.6.3 Control Flowchart 2.7 Performance Evaluation for the Established SRM Drive CHAPTER 3 THE DEVELOPED CCM AND DCM BUCK-BOOST SWITCHED-MODE RECTIFIERS 3.1 Introduction 3.2 Some Existing Single-Phase Switch-Mode Rectifiers 3.3 The Buck-Boost SMR under CCM 3.3.1 Power Circuit 3.3.2 Control Scheme 3.3.3 Performance Evaluation 3.4 The Buck-Boost SMR Front-End under DCM 3.4.1 Power Circuit 3.4.2 Voltage Feedback Controller 3.4.3 Performance Evaluation CHAPTER 4 SWITCHED-RELUCTANCE MOTOR DRIVE WITH DIFFERENT SWITCH-MODE RECTIFIER FRONT-ENDS 4.1 Introduction 4.2 The SRM Drive with CCM Buck-Boost SMR Front-end 4.3 The SRM Drive with DCM Buck-Boost SMR Front-end 4.4 The SRM Drive with Diode Rectifier Front-end 4.5 Experimental Comparative Performance Evaluation CHAPTER 5 SRM POSITION SENSORLESS CONTROL BASED ON NARROW VOLTAGE PULSE INJECTION 5.1 Introduction 5.2 Some Existing Position Sensorless Control Methods 5.3 The High-frequency Signal Injection SRM Position Sensorless Control Concept 5.4 The Proposed Rectifier-fed Sensorless SRM Drive 5.5 The Developed DCM SMR-fed Sensorless SRM Drive 5.6 The Developed CCM SMR-fed Sensorless SRM Drive CHAPTER 6 CONCLUSIONS REFERENCES

    A. SRM Basics
    [1]T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
    [2]R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
    [3]P. Rafajdus, V. Hrabovcova and P. Hudak, “Investigation of losses and efficiency in switched reluctance motor,” in Proc. EPE-PEMC, 2006, pp. 296-301.
    [4]J. Li, X. Song and Y. Cho, “Comparison of 12/8 and 6/4 switched reluctance motor: noise and vibration aspects,” IEEE Trans. Magnetics, vol. 44, no. 11, pp. 4131-4134, 2008.
    [5]A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, 1995.
    [6]T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
    [7]J. Hur, G. H. Kang, J. Y. Lee, J. P. Hong and B. K. Lee, “Design and optimization of high torque, low ripple switched reluctance motor with flux barrier for direct drive,” in Proc. IEEE IAS, 2004, vol. 1, pp. 401-408.
    [8]C. Lee, R. Krishnan and N. S. Lobo, “Novel two-phase switched reluctance machine using common-pole E-core structure: concept, analysis, and experimental verification,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 703-711, 2009.

    B. Converters Circuits
    [9]S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
    [10]D. H. Jang, I. Husain and M. Ehsani, “Modified (n+1) switch converter for switched reluctance motor drives,” in Proc. IEEE PESC, 1995, vol. 2, pp. 1121-1127.
    [11]L. Szamel, “Optimal control of transistor SRM converters with reduced number of switching element,” in Proc. EPE-PEMC, 2006, pp. 1105-1110.
    [12]A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
    [13]V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
    [14]K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
    [15]A. Dahmane, F. Meebody and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
    [16]M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
    [17]J. Y. Chai, “Development and control of a switched reluctance motor drive with power factor correction front-end” Ph.D. dissertation, Department of Electrical Engineering National Tsing Hua University, ROC, 2008.
    [18]K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 893-898.
    [19]Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 78-85, 1999.
    [20]C. K. Pan, “A DSP-based soft-switching converter-fed switched reluctance motor drive,” Master Thesis, Department of Electrical Engineering National Tsing Hua University, ROC, 2003.

    C. Power Semiconductor Modules
    [21]FCAS50SN60 smart power module for SRM, www.fairchildsemi.com/ds/FC/ /FC AS50SN60.pdf
    [22]FCAS20DN60BB smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS20DN60BB.pdf
    [23]IHCS22R60CE two phase switched reluctance drives, www.igbt.cn/admin/ productfile/IHCS22R60CE.pdf
    [24]A. C. Oliveira, C. B. Jacobina, A. M. N. Lima and F. Salvadori, “Startup and fault tolerance of the SRM drive with three-phase bridge inverter,” in Proc. IEEE PESC, 2005, pp. 714-719.
    [25]H. Goto, H. J. Guo and O. Ichinokura, “A novel drive method for switched reluctance motors using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
    [26]Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. IEEE PESC, 2006, pp. 1-7.
    [27]M. J. Lin, “Development of a switched reluctance motor drive with voltage boosting and PFC charging capabilities using three-phase power modules,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2008.
    [28]C. M. Liaw and H. C. Chang, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. PP, no. 99, pp. 1-1, 2010.

    D. Modeling and Parameter Estimation
    [29]N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 714-722, 2000.
    [30]B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Appl., vol. 37, no. 6, pp. 1675-1683, 2001.
    [31]P. Pillay, M. Ahmed and M. Samudio, “Modeling and performance of a SRM drive with improved ride-through capability,” IEEE Trans. Energy Convers., vol. 16, no. 2, pp. 165-173, 2001.
    [32]D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
    [33]B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
    [34]F. R. Salmasi and B. Fahimi, “Modeling switched-reluctance machines by decomposition of double magnetic saliencies,” IEEE Trans. Magnetics, vol. 40, no. 3, pp. 1556-1561, 2004.
    [35]A. K. Jain and N. Mohan, “Dynamic modeling, experimental characterization, and verification for SRM operation with simultaneous two-phase excitation,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1238-1249, 2006.
    [36]K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam and K. N. Srinivas, “Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magnetics, vol. 44, no. 12, pp. 4605-4617, 2008.
    [37]N. Khateeb, K. Muehlbauer and D. Gerling, “Dynamic modeling of the SRM using the macromodeling approach: comparison of simulation and experiment,” in Proc. IEEE EPE, 2009, pp. 1-9.
    [38]Z. Lin, D. S. Reay, B. W. Williams and X. He, “Online modeling for switched reluctance motors using b-spline neural networks,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3317-3322, 2007.
    [39]W. Lu, A. Keyhani and A. Fardoun, “Neural network-based modeling and parameter identification of switched reluctance motors,” IEEE Trans. Energy Convers., vol. 18, no 2, pp. 284-290, 2003.
    [40]A. D. Cheok and N. Ertugrul, “Use of fuzzy logic for modeling, estimation, and prediction in switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1207-1224, 1999.
    [41]K. I. Hwu, “Development of a switched reluctance motor drive” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.

    E. Current and Speed Controls
    [42]F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
    [43]M. T. Alrifai, J. H. Chow and D. A. Torrey, “Practical application of backstepping nonlinear current control to a switched-reluctance motor,” in Proc. IEEE ACC, 2000, vol. 1, pp. 594-599.
    [44]G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. IEEE IAS, 2002, vol. 2, pp. 1212-1218.
    [45]L. O. A. P. Henriques, P. J. C. Branco, L. G. B. Rolim and W. I. Suemitsu, “Proposition of an off line learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
    [46]S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
    [47]G. Schroder and J. Bekiesch, “Current control for the switched reluctance motor with enhanced performance,” in Proc. IEEE EPE, 2005, pp. 1-8.
    [48]I. S. Manolas, A. X. Kaletsanos and S. N. Manias, “Nonlinear current control technique for high performance switched reluctance machine drives,” in Proc. IEEE PESC, 2008, pp. 1229-1234.
    [49]Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IET Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010.
    [50]S. K. Sahoo, S. K. Panda and J. X. Xu, “Direct torque controller for switched reluctance motor drive using sliding mode control,” in Proc. IEEE PEDS, 2005, vol. 2, pp. 1129-1134.
    [51]R. Jeyabharath, P. Veena and M. Rajaram, “A novel DTC strategy of torque and flux control for switched reluctance motor drive,” in Proc. IEEE PEDS, 2006, pp. 1-5.
    [52]S. K. Sahoo, S. K. Panda and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. IEEE PES, 2007, pp. 1-7.
    [53]T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
    [54]C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
    [55]K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IET Proc. Electric Power Appl., vol. 148, no. 4, pp. 345-352, 2001.
    [56]C. Visa, G. Abba and R. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” in Proc. IEEE SMC, 2002, vol. 5, pp. 1-6.
    [57]M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IET Proc. Elect. Power Appl., vol. 150, no. 2, pp. 193-200, 2003.
    [58]C. G. Chen, “Sensorless speed control of switched reluctance drives using a nonlinear controller,” in Proc. IEEE ISIE, 2007, pp. 2256-2261.
    [59]G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
    [60]J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 811-815.
    [61]K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    [62]L. L. N. dos Reis, F. Sobreira, A. R. R. Coelho, O. M. Almeida, J. C. T. Campos and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP,” in Proc. COBEP, 2009, pp. 836-841.
    [63]S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
    [64]B. Singh, V. K. Sharma and S. S. Murthy, “Performance analysis of adaptive fuzzy logic controller for switched reluctance motor drive system,” in Proc. IEEE IAS, 1998, vol. 1, pp. 571-579.

    F. Commutation Instant Tuning
    [65]R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. Fifth European Conf. on Power Electron. and Appl., 1993, vol. 6, pp. 20-25.
    [66]B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
    [67]J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Elect. Power Appl., 1999, vol. 146, no. 1, pp. 2-10.
    [68]C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [69]K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [70]Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IET Proc. Electric Power Appl., vol. 1, no. 3, pp. 395-401, 2007.
    [71]S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. ECCTD, 2009, pp. 851-856.

    G. Single-Phase Switch-Mode Rectifiers
    [72]W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE SECON, 1998, pp. 348-353.
    [73]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, vol. 3, pp. 749-755, 2003.
    [74]A. R. Prasad, P. D. Ziogas and S. Manias, “A new active power factor correction method for single-phase buck-boost ac-dc converter,” in Proc. IEEE APEC, 1992, pp. 841-820.
    [75]Y. Nishida, S. Motegi and A. Maeda, “A single-phase buck-boost AC-to-DC converter with high-quality input and output waveforms,” in Proc. IEEE ISIE, 1995, vol. 1, pp. 433-438.
    [76]H. Matsuo, L. Tu, F. Kurokawa and H. Watanabe, “A novel soft-switching buck-boost type AC-DC converter with high power efficiency, high power factor and low harmonic distortion,” in Proc. IEEE PESC, 1998, vol. 2, pp. 1030-1035.
    [77]B. S. Lee and R. Krishnan, “A variable voltage converter topology for permanent-magnet brushless DC motor drives using buck-boost front-end power stage,” in Proc. IEEE ISIE, 1999, vol. 2, pp. 689-694.
    [78]O. Lopez, L. Garcia De Vicuna, M. Castilla, J. Matas and M. Lopez, “Sliding-mode-control design of a high-power-factor buck-boost rectifier,” IEEE Trans. Ind. Electron., vol. 46, no. 3, pp. 604-612, 1999.
    [79]H. Matsuo, H. Watanabe, F. Kurokawa and T. Lishan, “Analysis of the novel soft-switching buck-boost type AC-DC converter using magnetic coupling,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1239-1246.
    [80]J. Chen, D. Maksimovic and R. Erickson, “Buck-boost PWM converters having two independently controlled switches,” in Proc. IEEE PESC, 2001, vol. 2, pp. 736-741.
    [81]K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
    [82]A. Abouloifa and F. Giri, “Nonlinear control of buck-boost AC/DC converters: output voltage regulation & power factor correction,” in Proc. IEEE ACC, 2004, vol. 1, pp. 168-173.
    [83]M. S. Agamy and P. K. Jain, “A robust controller for a class of front-end buck-boost high power factor rectifiers,” in Proc. IEEE PESC, 2005, pp. 1998-2004.
    [84]G. K. Andersen and F. Blaabjerg, “Current programmed control of a single-phase two-switch buck-boost power factor correction circuit,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 263-271, 2005.
    [85]H. Y. Kanaan and K. Al-Haddad, “A comparative analysis of nonlinear current control schemes applied to a SEPIC power factor corrector,” in Proc. IEEE IECON, 2005, pp. 1104-1109.
    [86]P. Mattavelli, G. Spiazzi and P. Tenti, “Predictive digital control of power factor preregulators with input voltage estimation using disturbance observers,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 140-147, 2005.
    [87]G. Moschopoulos and Z. Yongqiang, “Buck-boost type AC-DC single-stage converters,” in Proc. IEEE ISIE, 2006, vol. 2, pp. 1123-1128.
    [88]E. H. Ismail, A. J. Sabzali and M. A. Al-Saffar, “Buck-boost-type unity power factor rectifier with extended voltage conversion ratio,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1123-1132, 2008.
    [89]M. A. Al-Saffar, E. H. Ismail and A. J. Sabzali, “Integrated buck-boost-quadratic buck PFC rectifier for universal input applications,” IEEE Trans. Ind. Electron., vol. 24, no. 12, pp. 2886-2896, 2009.
    [90]N. P. Papanikolaou and E. C. Tatakis, “Minimisation of power losses in PFC flyback converters operating in the continuous conduction mode,” in Proc. IEE-Electr. Power Appl., 2002, vol. 149, no. 4, pp. 283-291.
    [91]B. Axelrod, Y. Berkovich, S. Tapuchi and A. Ioinovici, “Single-stage single-switch switched-capacitor buck/buck-boost-type converter,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 2, pp. 419-430, 2009.

    H. Position Sensorless Control
    [92]M. Ehsani, I. Husain and A. B. Kulkarni, “Elimination of discrete position sensor and current sensor in switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 128–135, 1992.
    [93]H. Iqbal, “Indirect rotor-position estimation techniques for switched reluctance motors- a review,” www.ecgf.uakron.edu/husain/personal/pdf/96emon_rom.pdf.
    [94]M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, 2002.
    [95]G. Suresh, B. Fahimi and M. Ehsani, “Improvement of the accuracy and speed range in sensorless control of switched reluctance motors,” in Proc. IEEE APEC, 1998, vol. 2, pp. 770-777.
    [96]G. Suresh, B. Fahimi, K. M. Rahman, M. Ehsani and I. Panahi, “Four-quadrant sensorless SRM drive with high accuracy at all speeds,” in Proc. IEEE APEC, 1999, vol. 2, pp. 1226-1231.
    [97]P. Bishop, A. Khalil and I. Husain, “Low level amplitude modulation based sensorless operation of a switched reluctance motor,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3347-3352.
    [98]E. Kayikci, M. C. Harke and R. D. Lorenz, “Load invariant sensorless control of a SRM drive using high frequency signal injection,” in Proc. IEEE IAS, 2004, vol. 3, pp. 1632-1637.
    [99]S. M. Ahmed and P. W. Lefley, “A new simplified sensorless control method for a single phase SR motor using HF signal injection,” in Proc. IEEE UPEC, 2007, pp. 1075-1078.
    [100]E. Bassily, “New rotor-position estimation technique for sensorless switched reluctance motor,” in Proc. IEEE AMC, 2008, pp. 399-404.
    [101]G. Gallegos-lopez, P. C. Kjaer and T. J. E. Miller, “High-grade position estimation for SRM drives using flux linkage current correction model,” IEEE Trans. Ind. Appl., vol. 35, no. 4, pp. 859-869, 1999.
    [102]I. Miki, H. Noda and R. Moriyama, “A sensorless drive method for switched reluctance motor based on gradient of phase inductance,” in Proc. IEEE ICEMS, 2003, pp. 615-618.
    [103]A. Komatsuzaki, K. Yoshida and I. Miki, “A position sensorless drive technique considering magnetic saturation for switched reluctance motor,” in Proc. IEEE SPEEDAM, 2006, pp. 1002-1007.
    [104]A. Komatsuzaki, T. Bamba and I. Miki, “A position sensorless control for switched reluctance motor,” in Proc. IEEE PCC, 2007, pp. 867-873.
    [105]A. Komatsuzaki, T. Banba and I. Miki, “A position sensorless drive using estimation of turn-off angle under regenerative braking in switched reluctance motor,” in Proc. IEEE ICEMS, 2007, pp. 450-455.
    [106]I. Husain and M. S. Islam, “Observers for position and speed estimations in switched reluctance motors,” in Proc. IEEE Decision and Control, 2001, vol. 3, pp. 2217-2222.
    [107]A. D. Cheok and N. Ertugrul, “High robustness and reliability of fuzzy logic based position estimation for sensorless switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 319-334, 2000.
    [108]C. A. Hudson, N. S. Lobo and R. Krishnan, “Sensorless control of single switch based switched reluctance motor drive using neural network,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 2349-2354, 2008.
    [109]E. Mese and D. A. Torrey, “An approach for sensorless position estimation for switched reluctance motors using artificial neural networks,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 66-75, 2002.
    [110]S. Saha, K. Ochiai, T. Kosaka, N. Matsui and Y. Takeda, “Developing a sensorless approach for switched reluctance motors from a new analytical model,” in Proc. IEEE IAS, 1999, vol. 1, pp. 525-532.
    [111]G. Hongwei, F. R. Salmasi and M. Ehsani, “Inductance model-based sensorless control of the switched reluctance motor drive at low speed,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1568-1573, 2004.
    [112]G. Gallegos-Lopez, P. C. Kjaer and T. J. E. Miller, “A new sensorless method for switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 832-840, 1998.
    [113]J. Bekiesch and G. Schroder, “Sensorless operation of the switched reluctance machine,” in Proc. IEEE EPE, 2007, pp. 1-8.
    [114]D. H. Lee, T. H. Kim and J. W. Ahn, “A simplified novel sensorless control of SRM,” in Proc. IEEE IAS, 2006, vol. 4, pp. 2001-2005.
    [115]T. Wakasa, H. J. Guo and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON, 2002, vol. 1, pp. 502-507.
    [116]H. Gao, F. R. Salmasi and M. Ehsani, “Sensorless control of SRM at standstill,” in Proc. IEEE APEC, 2001, vol. 2, pp. 850-856.
    [117]A. Komatsuzaki, T. Bamba and I. Miki, “A position sensorless speed control for switched reluctance motor at low speeds,” in Proc. IEEE PES, 2007, pp. 1-7.
    [118]J. Bekiesch, G. Schroder, T. H. Kim and J. W. Ahn, “A simple excitation position detection method for sensorless SRM drive,” in Proc. IEEE EPE, 2007, pp. 1-8.
    [119]K. Trakrancharoungsook and S. Kittiratsatcha, “Position estimation technique of a switched reluctance motor at standstill,” in Proc. IEEE PCC, 2007, pp. 264-270.
    [120]M. Krishnamurthy, C. S. Edrington and B. Fahimi, “Prediction of rotor position at standstill and rotating shaft conditions in switched reluctance machines,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 225-233, 2006.
    [121]H. J. Guo, M. Takahashi, T. Watanabe and O. Ichinokura, “A new sensorless drive method of switched reluctance motors based on motor's magnetic characteristics,” IEEE Trans. Magnetics, vol. 37, no. 4, pp. 2831-2833, 2001.
    [122]H. J. Guo, W. B. Lee, T. Watanabe and O. Ichinokura, “An improved sensorless driving method of switched reluctance motors using impressed voltage pulse,” in Proc. IEEE PCC, 2002, vol. 3, pp. 977-980.
    [123]A. Khalil, S. Underwood, I. Husain, H. Klode, B. Lequesne, S. Gopalakrishnan and A. M. Omekanda, “Four-quadrant pulse injection and sliding mode observer based sensorless operation of a switched reluctance machine over entire speed range including zero speed,” IEEE Trans. Ind. Appl., vol. 43, no. 3, pp. 714-723, 2007.
    [124]S. Kachapornkul, P. Somsiri, N. Chayopitak, K. Tungpimolrut, R. Pupadubsin and P. Jitkreeyan, “Sensorless control of switched reluctance motor for three-phase full-bridge inverter drive,” in Proc. IEEE ICEMS, 2008, pp. 3321-3326.

    I. Others
    [125]R. W. Erickson and D. Maksimovic, Fundamentals of power Electronics, 2nd ed., Kluwer Academic Publishers, Norwell Massachusetts, 2001.
    [126]H. C. Chang and C. M. Liaw, “On the establishment of three-phase power module based converter and its control for switched-reluctance motor,” Proc. of 28th National Symposium on Electrical Power Engineering, ROC, Taiwan, pp. 1406-1411, 2008.
    [127]H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Vehicular Technology, vol. 58, no. 7, pp. 3198-3215, 2009.
    [128]Y. H. Lin, “A switched-reluctance motor drive with buck-boost power factor correction front-end,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2009.
    [129]Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE